More information about this series at http://www.springer.com/series/7407
Osvaldo Gervasi · Beniamino Murgante · Sanjay Misra · Chiara Garau · Ivan Blečić · David Taniar · Bernady O. Apduhan · Ana Maria A. C. Rocha · Eufemia Tarantino · Carmelo Maria Torre · Yeliz Karaca (Eds.)

Computational Science and Its Applications – ICCSA 2020

20th International Conference
Cagliari, Italy, July 1–4, 2020
Proceedings, Part VII

Springer
Preface

These seven volumes (LNCS volumes 12249–12255) consist of the peer-reviewed papers from the International Conference on Computational Science and Its Applications (ICCSA 2020) which took place from July 1–4, 2020. Initially the conference was planned to be held in Cagliari, Italy, in collaboration with the University of Cagliari, but due to the COVID-19 pandemic it was organized as an online event.

ICCSA 2020 was a successful event in the conference series, previously held in Saint Petersburg, Russia (2019), Melbourne, Australia (2018), Trieste, Italy (2017), Beijing, China (2016), Banff, Canada (2015), Guimaraes, Portugal (2014), Ho Chi Minh City, Vietnam (2013), Salvador, Brazil (2012), Santander, Spain (2011), Fukuoka, Japan (2010), Suwon, South Korea (2009), Perugia, Italy (2008), Kuala Lumpur, Malaysia (2007), Glasgow, UK (2006), Singapore (2005), Assisi, Italy (2004), Montreal, Canada (2003), and (as ICCS) Amsterdam, The Netherlands (2002) and San Francisco, USA (2001).

Computational science is the main pillar of most of the present research, industrial and commercial applications, and plays a unique role in exploiting ICT innovative technologies. The ICCSA conference series has provided a venue for researchers and industry practitioners to discuss new ideas, to share complex problems and their solutions, and to shape new trends in computational science.

Apart from the general track, ICCSA 2020 also included 52 workshops in various areas of computational science, ranging from computational science technologies to specific areas of computational science, such as software engineering, security, machine learning and artificial intelligence, blockchain technologies, and of applications in many fields. We accepted 498 papers, distributed among 6 conference main tracks, which included 52 in workshops and 32 short papers. We would like to express our appreciation to the workshops chairs and co-chairs for their hard work and dedication.

The success of the ICCSA conference series in general, and of ICCSA 2020 in particular, vitality depends on the support from many people: authors, presenters, participants, keynote speakers, workshop chairs, session chairs, Organizing Committee members, student volunteers, Program Committee members, Advisory Committee members, international liaison chairs, reviewers, and others in various roles. We take this opportunity to wholeheartedly thank them all.

We also wish to thank our publisher, Springer, for their acceptance to publish the proceedings, for sponsoring part of the Best Papers Awards, and for their kind assistance and cooperation during the editing process.
Preface

We cordially invite you to visit the ICCSA website http://www.iccsa.org where you can find all the relevant information about this interesting and exciting event.

July 2020

Osvaldo Gervasi
Beniamino Murgante
Sanjay Misra
Welcome to the Online Conference

The COVID-19 pandemic disrupted our plans for ICCSA 2020, as was the case for the scientific community around the world. Hence, we had to promptly regroup and rush to set in place the organization and the underlying infrastructure of the online event.

We chose to build the technological infrastructure using only open source software. In particular, we used Jitsi (jitsi.org) for the videoconferencing, Riot (riot.im) together with Matrix (matrix.org) for chat and asynchronous communication, and Jibri (github.com/jitsi/jibri) for live streaming sessions on YouTube.

Six Jitsi servers were set up, one for each parallel session. The participants of the sessions were helped and assisted by eight volunteer students (from the Universities of Cagliari, Florence, Perugia, and Bari), who assured technical support and smooth running of the conference proceedings.

The implementation of the software infrastructure and the technical coordination of the volunteers was carried out by Damiano Perri and Marco Simonetti.

Our warmest thanks go to all the volunteering students, to the technical coordinators, and to the development communities of Jitsi, Jibri, Riot, and Matrix, who made their terrific platforms available as open source software.

Our heartfelt thanks go to the keynote speakers: Yaneer Bar-Yam, Cecilia Ceccarelli, and Vincenzo Piuri and to the guests of the closing keynote panel: Mike Batty, Denise Pumain, and Alexis Tsoukiás.

A big thank you goes to all the 454 speakers, many of whom showed an enormous collaborative spirit, sometimes participating and presenting in almost prohibitive times of the day, given that the participants of this year’s conference come from 52 countries scattered over many time zones of the globe.

Finally, we would like to thank Google for letting us livestream all the events via YouTube. In addition to lightening the load of our Jitsi servers, that will allow us to keep memory and to be able to review the most exciting moments of the conference.

We all hope to meet in our beautiful Cagliari next year, safe from COVID-19, and finally free to meet in person and enjoy the beauty of the ICCSA community in the enchanting Sardinia.

July 2020

Ivan Blečič
Chiara Garau
Organization

ICCSA 2020 was organized by the University of Cagliari (Italy), University of Perugia (Italy), University of Basilicata (Italy), Monash University (Australia), Kyushu Sangyo University (Japan), and University of Minho (Portugal).

Honorary General Chairs

Antonio Laganà Master-UP, Italy
Norio Shiratori Chuo University, Japan
Kenneth C. J. Tan Sardina Systems, UK
Corrado Zoppi University of Cagliari, Italy

General Chairs

Osvaldo Gervasi University of Perugia, Italy
Ivan Blečič University of Cagliari, Italy
David Taniar Monash University, Australia

Program Committee Chairs

Beniamino Murgante University of Basilicata, Italy
Bernady O. Apduhan Kyushu Sangyo University, Japan
Chiara Garau University of Cagliari, Italy
Ana Maria A. C. Rocha University of Minho, Portugal

International Advisory Committee

Jemal Abawajy Deakin University, Australia
Dharma P. Agarwal University of Cincinnati, USA
Rajkumar Buyya The University of Melbourne, Australia
Claudia Bauzer Medeiros University of Campinas, Brazil
Manfred M. Fisher Vienna University of Economics and Business, Austria
Marina L. Gavrilova University of Calgary, Canada
Yee Leung Chinese University of Hong Kong, China

International Liaison Chairs

Giuseppe Borruso University of Trieste, Italy
Elise De Donker Western Michigan University, USA
Maria Irene Falcão University of Minho, Portugal
Robert C. H. Hsu Chung Hua University, Taiwan
Tai-Hoon Kim Beijing Jiaotong University, China
Vladimir Korkhov Saint Petersburg University, Russia
Sanjay Misra Covenant University, Nigeria
Takashi Naka Kyushu Sangyo University, Japan
Rafael D. C. Santos National Institute for Space Research, Brazil
Maribel Yasmina Santos University of Minho, Portugal
Elena Stankova Saint Petersburg University, Russia

Workshop and Session Organizing Chairs

Beniamino Murgante University of Basilicata, Italy
Sanjay Misra Covenant University, Nigeria
Jorge Gustavo Rocha University of Minho, Portugal

Award Chair

Wenny Rahayu La Trobe University, Australia

Publicity Committee Chairs

Elmer Dadios De La Salle University, Philippines
Nataliia Kulabukhova Saint Petersburg University, Russia
Daisuke Takahashi Tsukuba University, Japan
Shangwang Wang Beijing University of Posts and Telecommunications, China

Technology Chairs

Damiano Perri University of Florence, Italy
Marco Simonetti University of Florence, Italy

Local Arrangement Chairs

Ivan Blečić University of Cagliari, Italy
Chiara Garau University of Cagliari, Italy
Ginevra Balletto University of Cagliari, Italy
Giuseppe Borruso University of Trieste, Italy
Michele Campagna University of Cagliari, Italy
Mauro Coni University of Cagliari, Italy
Anna Maria Colavitti University of Cagliari, Italy
Giulia Desogus University of Cagliari, Italy
Sabrina Lai University of Cagliari, Italy
Francesca Maltinti University of Cagliari, Italy
Pasquale Mistretta University of Cagliari, Italy
Augusto Montisci University of Cagliari, Italy
Francesco Pinna University of Cagliari, Italy
Program Committee

Vera Afreixo
Filipe Alvelos
Hartmut Asche
Ginevra Balletto
Michela Bertolotto
Sandro Bimonte
Rod Blais
Ivan Blečič
Giuseppe Borruso
Ana Cristina Braga
Massimo Cafaro
Yves Caniou
José A. Cardoso e Cunha
Rui Cardoso
Leocadio G. Casado
Carlo Cattani
Mete Celik
Hyunseung Choo
Min Young Chung
Florbela Maria da Cruz
Domingues Correia
Gilberto Corso Pereira
Alessandro Costantini
Carla Dal Sasso Freitas
Pradesh Debbha
Hendrik Decker
Frank Devai
Rodolphe Devillers
Joana Matos Dias
Paolino Di Felice
Prabu Dorairaj
M. Irene Falcao
Cherry Liu Fang
Florbela P. Fernandes
Jose-Jesus Fernandez
Paula Odete Fernandes
Adelaide de Fátima Baptista
 Valente Freitas

University of Aveiro, Portugal
University of Minho, Portugal
University of Potsdam, Germany
University of Cagliari, Italy
University College Dublin, Ireland
CEMAGREF, TSCF, France
University of Calgary, Canada
University of Sassari, Italy
University of Trieste, Italy
University of Minho, Portugal
University of Salento, Italy
Lyon University, France
Universidade Nova de Lisboa, Portugal
University of Beira Interior, Portugal
University of Almeria, Spain
University of Salerno, Italy
Erciyes University, Turkey
Sungkyunkwan University, South Korea
Sungkyunkwan University, South Korea
Polytechnic Institute of Viana do Castelo, Portugal
Federal University of Bahia, Brazil
INFN, Italy
Universidade Federal do Rio Grande do Sul, Brazil
The Council for Scientific and Industrial Research (CSIR), South Africa
Instituto Tecnológico de Informática, Spain
London South Bank University, UK
Memorial University of Newfoundland, Canada
University of Coimbra, Portugal
University of L’Aquila, Italy
NetApp, India/USA
University of Minho, Portugal
U.S. DOE Ames Laboratory, USA
Polytechnic Institute of Bragança, Portugal
National Centre for Biotechnology, CSIS, Spain
Polytechnic Institute of Bragança, Portugal
University of Aveiro, Portugal
Manuel Carlos Figueiredo
University of Minho, Portugal

Maria Célia Furtado Rocha
PRODEB–PósCultura, UFBA, Brazil

Chiara Garau
University of Cagliari, Italy

Paulino Jose García Nieto
University of Oviedo, Spain

Jerome Gensel
LSR-IMAG, France

Maria Giaoutzi
National Technical University of Athens, Greece

Armanda Manuela Andrade Pereira Gonçalves
University of Minho, Portugal

Andrzej M. Goscinski
Deakin University, Australia

Sevin Gümgüm
Izmir University of Economics, Turkey

Alex Hagen-Zanker
University of Cambridge, UK

Shanmugasundaram Hariharan
B.S. Abdur Rahman University, India

Eligius M. T. Hendrix
University of Malaga, Spain, and Wageningen University, The Netherlands

Hisamoto Hiyoshi
Gunma University, Japan

Mustafa Inceoglu
EGE University, Turkey

Peter Jimack
University of Leeds, UK

Qun Jin
Waseda University, Japan

Farid Karimipour
Vienna University of Technology, Austria

Baris Kazar
Oracle Corp., USA

Maulana Adhinugraha Kiki
Telkom University, Indonesia

DongSeong Kim
University of Canterbury, New Zealand

Taihoon Kim
Hannam University, South Korea

Ivana Kolingerova
University of West Bohemia, Czech Republic

Natalia Kulabukhova
Saint Petersburg University, Russia

Vladimir Korkhov
Saint Petersburg University, Russia

Rosa Lasaponara
CNR, Italy

Maurizio Lazzari
CNR, Italy

Cheng Siong Lee
Monash University, Australia

Sangyoun Lee
Yonsei University, South Korea

Jongchan Lee
Kunsan National University, South Korea

Chendong Li
University of Connecticut, USA

Gang Li
Deakin University, Australia

Fang Liu
AMES Laboratories, USA

Xin Liu
University of Calgary, Canada

Andrea Lombardi
University of Perugia, Italy

Savino Longo
University of Bari, Italy

Tinghuai Ma
Nanjing University of Information Science and Technology, China

Ernesto Marcheggiani
Katholieke Universiteit Leuven, Belgium

Antonino Marvuglia
Research Centre Henri Tudor, Luxembourg

Nicola Masini
CNR, Italy

Ilaria Matteucci
CNR, Italy

Eric Medvet
University of Trieste, Italy

Nirvana Meratnia
University of Twente, The Netherlands
Noelia Faginas Lago University of Perugia, Italy
Giuseppe Modica University of Reggio Calabria, Italy
Josè Luis Montañà University of Cantabria, Spain
Maria Filipa Mourão IP from Viana do Castelo, Portugal
Louiza de Macedo Mourelle State University of Rio de Janeiro, Brazil
Nadia Nedjah State University of Rio de Janeiro, Brazil
Laszlo Neumann University of Girona, Spain
Kok-Leong Ong Deakin University, Australia
Belen Palop Universidad de Valladolid, Spain
Marcin Paprzycki Polish Academy of Sciences, Poland
Eric Pardeede La Trobe University, Australia
Kwangjin Park Wonkwang University, South Korea
Ana Isabel Pereira Polytechnic Institute of Bragança, Portugal
Massimiliano Petri University of Pisa, Italy
Maurizio Pollino Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Italy
Alenka Poplin University of Hamburg, Germany
Vidyasagar Potdar Curtin University of Technology, Australia
David C. Prosperi Florida Atlantic University, USA
Wenny Rahayu La Trobe University, Australia
Jerzy Respondek Silesian University of Technology, Poland
Humberto Rocha INESC-Coimbra, Portugal
Jon Rokne University of Calgary, Canada
Octavio Roncero CSIC, Spain
Maytham Safar Kuwait University, Kuwait
Francesco Santini University of Perugia, Italy
Chiara Saracino A.O. Ospedale Niguarda Ca’ Granda, Italy
Haiduke Sarafian Penn State University, USA
Marco Paulo Seabra dos Reis University of Coimbra, Portugal
Jie Shen University of Michigan, USA
Qi Shi Liverpool John Moores University, UK
Dale Shires U.S. Army Research Laboratory, USA
Inês Soares University of Coimbra, Portugal
Elena Stankova Saint Petersburg University, Russia
Takuo Suganuma Tohoku University, Japan
Eufemia Tarantino Polytechnic University of Bari, Italy
Sergio Tasso University of Perugia, Italy
Ana Paula Teixeira University of Trás-os-Montes and Alto Douro, Portugal
Senhorinha Teixeira University of Minho, Portugal
M. Filomena Teodoro Portuguese Naval Academy, University of Lisbon, Portugal
Parimala Thulasiraman University of Manitoba, Canada
Carmelo Torre Polytechnic University of Bari, Italy
Javier Martinez Torres Centro Universitario de la Defensa Zaragoza, Spain
Giuseppe A. Trunfio University of Sassari, Italy
Pablo Vanegas University of Cuenca, Ecuador
Marco Vizzari University of Perugia, Italy
Varun Vohra Merck Inc., USA
Koichi Wada University of Tsukuba, Japan
Krzysztof Walkowiak Wroclaw University of Technology, Poland
Zequn Wang Intelligent Automation Inc., USA
Robert Weibel University of Zurich, Switzerland
Frank Westad Norwegian University of Science and Technology, Norway
Roland Wismüller Universität Siegen, Germany
Mudasser Wyne SOET National University, USA
Chung-Huang Yang National Kaohsiung Normal University, Taiwan
Xin-She Yang National Physical Laboratory, UK
Salim Zabir France Telecom Japan Co., Japan
Haifeng Zhao University of California, Davis, USA
Fabiana Zollo University of Venice, Italy
Albert Y. Zomaya The University of Sydney, Australia

Workshop Organizers

Advanced Transport Tools and Methods (A2TM 2020)
Massimiliano Petri University of Pisa, Italy
Antonio Pratelli University of Pisa, Italy

Advances in Artificial Intelligence Learning Technologies: Blended Learning, STEM, Computational Thinking and Coding (AAILT 2020)
Valentina Franzoni University of Perugia, Italy
Alfredo Milani University of Perugia, Italy
Sergio Tasso University of Perugia, Italy

Workshop on Advancements in Applied Machine Learning and Data Analytics (AAMDA 2020)
Alessandro Costantini INFN, Italy
Daniele Cesini INFN, Italy
Davide Salomoni INFN, Italy
Doina Cristina Duma INFN, Italy

Advanced Computational Approaches in Artificial Intelligence and Complex Systems Applications (ACAC 2020)
Yeliz Karaca University of Massachusetts Medical School, USA
Dumitru Baleanu Çankaya University, Turkey, and Institute of Space Sciences, Romania
Majaz Moonis University of Massachusetts Medical School, USA
Yu-Dong Zhang University of Leicester, UK
Affective Computing and Emotion Recognition (ACER-EMORE 2020)
Valentina Franzoni
University of Perugia, Italy
Alfredo Milani
University of Perugia, Italy
Giulio Biondi
University of Florence, Italy

AI Factory and Smart Manufacturing (AFACTORY 2020)
Jongpil Jeong
Sungkyunkwan University, South Korea

Air Quality Monitoring and Citizen Science for Smart Urban Management. State of the Art And Perspectives (AirQ&CScience 2020)
Grazie Fattoruso
ENEA CR Portici, Italy
Maurizio Pollino
ENEA CR Casaccia, Italy
Saverio De Vito
ENEA CR Portici, Italy

Automatic Landform Classification: Spatial Methods and Applications (ALCSMA 2020)
Maria Danese
CNR-ISPC, Italy
Dario Gioia
CNR-ISPC, Italy

Advances of Modelling Micromobility in Urban Spaces (AMMUS 2020)
Tiziana Campisi
University of Enna KORE, Italy
Giovanni Tesoriere
University of Enna KORE, Italy
Ioannis Politis
Aristotle University of Thessaloniki, Greece
Socrates Basbas
Aristotle University of Thessaloniki, Greece
Sanja Surdonja
University of Rijeka, Croatia
Marko Rencelj
University of Maribor, Slovenia

Advances in Information Systems and Technologies for Emergency Management, Risk Assessment and Mitigation Based on the Resilience Concepts (ASTER 2020)
Maurizio Pollino
ENEA, Italy
Marco Vona
University of Basilicata, Italy
Amedeo Flora
University of Basilicata, Italy
Chiara Iacovino
University of Basilicata, Italy
Beniamino Murgante
University of Basilicata, Italy

Advances in Web Based Learning (AWBL 2020)
Birol Ciloglugil
Ege University, Turkey
Mustafa Murat Inceoglu
Ege University, Turkey
Blockchain and Distributed Ledgers: Technologies and Applications (BDLTA 2020)

Vladimir Korkhov
Saint Petersburg University, Russia

Elena Stankova
Saint Petersburg University, Russia

Nataliia Kulabukhova
Saint Petersburg University, Russia

Bio and Neuro Inspired Computing and Applications (BIONCA 2020)

Nadia Nedjah
State University of Rio de Janeiro, Brazil

Luiza De Macedo Mourelle
State University of Rio de Janeiro, Brazil

Computer Aided Modeling, Simulation and Analysis (CAMSA 2020)

Jie Shen
University of Michigan, USA

Computational and Applied Statistics (CAS 2020)

Ana Cristina Braga
University of Minho, Portugal

Computerized Evidence Based Decision Making (CEBDEM 2020)

Clarice Bleil de Souza
Cardiff University, UK

Valerio Cuttini
University of Pisa, Italy

Federico Cerutti
Cardiff University, UK

Camilla Pezzica
Cardiff University, UK

Computational Geometry and Applications (CGA 2020)

Marina Gavriloava
University of Calgary, Canada

Computational Mathematics, Statistics and Information Management (CMSIM 2020)

Maria Filomena Teodoro
Portuguese Naval Academy, University of Lisbon, Portugal

Computational Optimization and Applications (COA 2020)

Ana Rocha
University of Minho, Portugal

Humberto Rocha
University of Coimbra, Portugal

Computational Astrochemistry (CompAstro 2020)

Marzio Rosi
University of Perugia, Italy

Cecilia Ceccarelli
University of Grenoble, France

Stefano Falcinelli
University of Perugia, Italy

Dimitrios Skouteris
Master-UP, Italy
Cities, Technologies and Planning (CTP 2020)

Beniamino Murgante
University of Basilicata, Italy
Ljiljana Zivkovic
Ministry of Construction, Transport and Infrastructure and Institute of Architecture and Urban & Spatial Planning of Serbia, Serbia
Giuseppe Borruso
University of Trieste, Italy
Malgorzata Hanzl
University of Łódź, Poland

Data Stream Processing and Applications (DASPA 2020)

Raja Chiky
ISEP, France
Rosanna VERDE
University of Campania, Italy
Marcilio De Souto
Orleans University, France

Data Science for Cyber Security (DS4Cyber 2020)

Hongmei Chi
Florida A&M University, USA

Econometric and Multidimensional Evaluation in Urban Environment (EMEUE 2020)

Carmelo Maria Torre
Polytechnic University of Bari, Italy
Pierluigi Morano
Polytechnic University of Bari, Italy
Maria Cerreta
University of Naples, Italy
Paola Perchinunno
University of Bari, Italy
Francesco Tajani
University of Rome, Italy
Simona Panaro
University of Portsmouth, UK
Francesco Scorza
University of Basilicata, Italy

Frontiers in Machine Learning (FIML 2020)

Massimo Bilancia
University of Bari, Italy
Paola Perchinunno
University of Bari, Italy
Pasquale Lops
University of Bari, Italy
Danilo Di Bona
University of Bari, Italy

Future Computing System Technologies and Applications (FiSTA 2020)

Bernady Apduhan
Kyushu Sangyo University, Japan
Rafael Santos
Brazilian National Institute for Space Research, Brazil

Geodesign in Decision Making: Meta Planning and Collaborative Design for Sustainable and Inclusive Development (GDM 2020)

Francesco Scorza
University of Basilicata, Italy
Michele Campagna
University of Cagliari, Italy
Ana Clara Mourao Moura
Federal University of Minas Gerais, Brazil
Geomatics in Forestry and Agriculture: New Advances and Perspectives (GeoForAgr 2020)

Maurizio Pollino ENEA, Italy
Giuseppe Modica University of Reggio Calabria, Italy
Marco Vizzari University of Perugia, Italy

Geographical Analysis, Urban Modeling, Spatial Statistics (GEOG-AND-MOD 2020)

Beniamino Murgante University of Basilicata, Italy
Giuseppe Borruso University of Trieste, Italy
Hartmut Asche University of Potsdam, Germany

Geomatics for Resource Monitoring and Management (GRMM 2020)

Eufemia Tarantino Polytechnic University of Bari, Italy
Enrico Borgogno Mondino University of Torino, Italy
Marco Scailo Polytechnic University of Milan, Italy
Alessandra Capolupo Polytechnic University of Bari, Italy

Software Quality (ISSQ 2020)

Sanjay Misra Covenant University, Nigeria

Collective, Massive and Evolutionary Systems (IWCES 2020)

Alfredo Milani University of Perugia, Italy
Rajdeep Niyogi Indian Institute of Technology, Roorkee, India
Alina Elena Baia University of Florence, Italy

Large Scale Computational Science (LSCS 2020)

Elise De Doncker Western Michigan University, USA
Fukuko Yuasa High Energy Accelerator Research Organization (KEK), Japan
Hideo Matsufuru High Energy Accelerator Research Organization (KEK), Japan

Land Use Monitoring for Sustainability (LUMS 2020)

Carmelo Maria Torre Polytechnic University of Bari, Italy
Alessandro Bonifazi Polytechnic University of Bari, Italy
Pasquale Balena Polytechnic University of Bari, Italy
Massimiliano Bencardino University of Salerno, Italy
Francesco Tajani University of Rome, Italy
Pierluigi Morano Polytechnic University of Bari, Italy
Maria Cerretta University of Naples, Italy
Giuliano Poli University of Naples, Italy
Machine Learning for Space and Earth Observation Data (MALSEOD 2020)

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rafael Santos</td>
<td>INPE, Brazil</td>
</tr>
<tr>
<td>Karine Ferreira</td>
<td>INPE, Brazil</td>
</tr>
</tbody>
</table>

Building Multi-dimensional Models for Assessing Complex Environmental Systems (MES 2020)

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marta Dell’Ovo</td>
<td>Polytechnic University of Milan, Italy</td>
</tr>
<tr>
<td>Vanessa Assumma</td>
<td>Polytechnic University of Torino, Italy</td>
</tr>
<tr>
<td>Caterina Caprioli</td>
<td>Polytechnic University of Torino, Italy</td>
</tr>
<tr>
<td>Giulia Datola</td>
<td>Polytechnic University of Torino, Italy</td>
</tr>
<tr>
<td>Federico dell’Anna</td>
<td>Polytechnic University of Torino, Italy</td>
</tr>
</tbody>
</table>

Ecosystem Services: Nature’s Contribution to People in Practice. Assessment Frameworks, Models, Mapping, and Implications (NC2P 2020)

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Francesco Scorza</td>
<td>University of Basilicata, Italy</td>
</tr>
<tr>
<td>David Cabana</td>
<td>International Marine Center, Italy</td>
</tr>
<tr>
<td>Sabrina Lai</td>
<td>University of Cagliari, Italy</td>
</tr>
<tr>
<td>Ana Clara Mourao Moura</td>
<td>Federal University of Minas Gerais, Brazil</td>
</tr>
<tr>
<td>Corrado Zoppi</td>
<td>University of Cagliari, Italy</td>
</tr>
</tbody>
</table>

Open Knowledge for Socio-economic Development (OKSED 2020)

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Luigi Mundula</td>
<td>University of Cagliari, Italy</td>
</tr>
<tr>
<td>Flavia Marzano</td>
<td>Link Campus University, Italy</td>
</tr>
<tr>
<td>Maria Paradiso</td>
<td>University of Milan, Italy</td>
</tr>
</tbody>
</table>

Scientific Computing Infrastructure (SCI 2020)

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elena Stankova</td>
<td>Saint Petersburg State University, Russia</td>
</tr>
<tr>
<td>Vladimir Korkhov</td>
<td>Saint Petersburg State University, Russia</td>
</tr>
<tr>
<td>Natalia Kulabukhova</td>
<td>Saint Petersburg State University, Russia</td>
</tr>
</tbody>
</table>

Computational Studies for Energy and Comfort in Buildings (SECoB 2020)

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Senhorinha Teixeira</td>
<td>University of Minho, Portugal</td>
</tr>
<tr>
<td>Luis Martins</td>
<td>University of Minho, Portugal</td>
</tr>
<tr>
<td>Ana Maria Rocha</td>
<td>University of Minho, Portugal</td>
</tr>
</tbody>
</table>

Software Engineering Processes and Applications (SEPA 2020)

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sanjay Misra</td>
<td>Covenant University, Nigeria</td>
</tr>
</tbody>
</table>

Smart Ports - Technologies and Challenges (SmartPorts 2020)

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gianfranco Fancelllo</td>
<td>University of Cagliari, Italy</td>
</tr>
<tr>
<td>Patrizia Serra</td>
<td>University of Cagliari, Italy</td>
</tr>
<tr>
<td>Marco Mazzarino</td>
<td>University of Venice, Italy</td>
</tr>
<tr>
<td>Luigi Mundula</td>
<td>University of Cagliari, Italy</td>
</tr>
</tbody>
</table>
Ginevra Balletto | University of Cagliari, Italy
Giuseppe Borruso | University of Trieste, Italy

Sustainability Performance Assessment: Models, Approaches and Applications Toward Interdisciplinary and Integrated Solutions (SPA 2020)

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Francesco Scorza</td>
<td>University of Basilicata, Italy</td>
<td>Italy</td>
</tr>
<tr>
<td>Valentin Grecu</td>
<td>Lucian Blaga University, Romania</td>
<td>Romania</td>
</tr>
<tr>
<td>Jolanta Dvarioniene</td>
<td>Kaunas University of Technology, Lithuania</td>
<td>Lithuania</td>
</tr>
<tr>
<td>Sabrina Lai</td>
<td>University of Cagliari, Italy</td>
<td>Italy</td>
</tr>
<tr>
<td>Iole Cerminara</td>
<td>University of Basilicata, Italy</td>
<td>Italy</td>
</tr>
<tr>
<td>Corrado Zoppi</td>
<td>University of Cagliari, Italy</td>
<td>Italy</td>
</tr>
</tbody>
</table>

Smart and Sustainable Island Communities (SSIC 2020)

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chiara Garau</td>
<td>University of Cagliari, Italy</td>
<td>Italy</td>
</tr>
<tr>
<td>Anastasia Stratigia</td>
<td>National Technical University of Athens, Greece</td>
<td>Greece</td>
</tr>
<tr>
<td>Paola Zamperlin</td>
<td>University of Pisa, Italy</td>
<td>Italy</td>
</tr>
<tr>
<td>Francesco Scorza</td>
<td>University of Basilicata, Italy</td>
<td>Italy</td>
</tr>
</tbody>
</table>

Science, Technologies and Policies to Innovate Spatial Planning (STP4P 2020)

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chiara Garau</td>
<td>University of Cagliari, Italy</td>
<td>Italy</td>
</tr>
<tr>
<td>Daniele La Rosa</td>
<td>University of Catania, Italy</td>
<td>Italy</td>
</tr>
<tr>
<td>Francesco Scorza</td>
<td>University of Basilicata, Italy</td>
<td>Italy</td>
</tr>
<tr>
<td>Anna Maria Colavitti</td>
<td>University of Cagliari, Italy</td>
<td>Italy</td>
</tr>
<tr>
<td>Beniamino Murgante</td>
<td>University of Basilicata, Italy</td>
<td>Italy</td>
</tr>
<tr>
<td>Paolo La Greca</td>
<td>University of Catania, Italy</td>
<td>Italy</td>
</tr>
</tbody>
</table>

New Frontiers for Strategic Urban Planning (StrategicUP 2020)

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Luigi Mundula</td>
<td>University of Cagliari, Italy</td>
<td>Italy</td>
</tr>
<tr>
<td>Ginevra Balletto</td>
<td>University of Cagliari, Italy</td>
<td>Italy</td>
</tr>
<tr>
<td>Giuseppe Borruso</td>
<td>University of Trieste, Italy</td>
<td>Italy</td>
</tr>
<tr>
<td>Michele Campagna</td>
<td>University of Cagliari, Italy</td>
<td>Italy</td>
</tr>
<tr>
<td>Beniamino Murgante</td>
<td>University of Basilicata, Italy</td>
<td>Italy</td>
</tr>
</tbody>
</table>

Theoretical and Computational Chemistry and its Applications (TCCMA 2020)

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noelia Faginas-Lago</td>
<td>University of Perugia, Italy</td>
<td>Italy</td>
</tr>
<tr>
<td>Andrea Lombardi</td>
<td>University of Perugia, Italy</td>
<td>Italy</td>
</tr>
</tbody>
</table>

Tools and Techniques in Software Development Process (TTSDP 2020)

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sanjay Misra</td>
<td>Covenant University, Nigeria</td>
<td>Nigeria</td>
</tr>
</tbody>
</table>

Urban Form Studies (UForm 2020)

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Malgorzata Hanzl</td>
<td>Łódź University of Technology, Poland</td>
<td>Poland</td>
</tr>
</tbody>
</table>
Urban Space Extended Accessibility (USEAccessibility 2020)
Chiara Garau
University of Cagliari, Italy
Francesco Pinna
University of Cagliari, Italy
Beniamino Murgante
University of Basilicata, Italy
Mauro Coni
University of Cagliari, Italy
Francesca Maltinti
University of Cagliari, Italy
Vincenza Torrisi
University of Catania, Italy
Matteo Ignaccolo
University of Catania, Italy

Virtual and Augmented Reality and Applications (VRA 2020)
Osvaldo Gervasi
University of Perugia, Italy
Damiano Perri
University of Perugia, Italy
Marco Simonetti
University of Perugia, Italy
Sergio Tasso
University of Perugia, Italy

Workshop on Advanced and Computational Methods for Earth Science Applications (WACM4ES 2020)
Luca Piroddi
University of Cagliari, Italy
Laura Foddis
University of Cagliari, Italy
Gian Piero Deidda
University of Cagliari, Italy
Augusto Montiscia
University of Cagliari, Italy
Gabriele Uras
University of Cagliari, Italy
Giulio Vignoli
University of Cagliari, Italy

Sponsoring Organizations

ICCSA 2020 would not have been possible without tremendous support of many organizations and institutions, for which all organizers and participants of ICCSA 2020 express their sincere gratitude:

Springer International Publishing AG, Germany
(https://www.springer.com)

Computers Open Access Journal
(https://www.mdpi.com/journal/computers)

IEEE Italy Section, Italy
(https://italy.ieeer8.org/)
Centre-North Italy Chapter IEEE GRSS, Italy
(https://cispio.diet.uniroma1.it/marzano/ieee-grs/index.html)

Italy Section of the Computer Society, Italy
(https://site.ieee.org/italy-cs/)

University of Cagliari, Italy
(https://unica.it/)

University of Perugia, Italy
(https://www.unipg.it)

University of Basilicata, Italy
(http://www.unibas.it)

Monash University, Australia
(https://www.monash.edu/)
Kyushu Sangyo University, Japan
(https://www.kyusan-u.ac.jp/)

University of Minho, Portugal
(https://www.uminho.pt/)

Scientific Association Transport Infrastructures, Italy
(https://www.stradeeautostrade.it/associazioni-e-organizzazioni/asit-associazione-scientificainfrastrutture-trasporto/)

Regione Sardegna, Italy
(https://regione.sardegna.it/)

Comune di Cagliari, Italy
(https://www.comune.cagliari.it/)
Referees

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. P. Andrade Marina</td>
<td>ISCTE, Instituto Universitário de Lisboa, Portugal</td>
</tr>
<tr>
<td>Adesso Paolo</td>
<td>University of Salerno, Italy</td>
</tr>
<tr>
<td>Adewumi Adewole</td>
<td>Algonquin College, Canada</td>
</tr>
<tr>
<td>Afolabi Adedeji</td>
<td>Covenant University, Nigeria</td>
</tr>
<tr>
<td>Afreixo Vera</td>
<td>University of Aveiro, Portugal</td>
</tr>
<tr>
<td>Agrawal Smirti</td>
<td>Freelancer, USA</td>
</tr>
<tr>
<td>Agrawal Akshat</td>
<td>Amity University Haryana, India</td>
</tr>
<tr>
<td>Ahmad Waseem</td>
<td>Federal University of Technology Minna, Nigeria</td>
</tr>
<tr>
<td>Akgun Nurten</td>
<td>Bursa Technical University, Turkey</td>
</tr>
<tr>
<td>Alam Tauhidul</td>
<td>Louisiana State University Shreveport, USA</td>
</tr>
<tr>
<td>Aleixo Sandra M.</td>
<td>CEAUL, Portugal</td>
</tr>
<tr>
<td>Alfa Abraham</td>
<td>Federal University of Technology Minna, Nigeria</td>
</tr>
<tr>
<td>Alvelos Filipe</td>
<td>University of Minho, Portugal</td>
</tr>
<tr>
<td>Alves Alexandra</td>
<td>University of Minho, Portugal</td>
</tr>
<tr>
<td>Amato Federico</td>
<td>University of Lausanne, Switzerland</td>
</tr>
<tr>
<td>Andrade Marina Alexandra</td>
<td>ISCTE-IUL, Portugal</td>
</tr>
<tr>
<td>Pedro</td>
<td></td>
</tr>
<tr>
<td>Andrianov Sergey</td>
<td>Saint Petersburg State University, Russia</td>
</tr>
<tr>
<td>Anelli Angelo</td>
<td>CNR-IGAG, Italy</td>
</tr>
<tr>
<td>Anelli Debora</td>
<td>University of Rome, Italy</td>
</tr>
<tr>
<td>Annunziata Alfonso</td>
<td>University of Cagliari, Italy</td>
</tr>
<tr>
<td>Antognelli Sara</td>
<td>Agricolus, Italy</td>
</tr>
<tr>
<td>Aoyama Tatsumi</td>
<td>High Energy Accelerator Research Organization, Japan</td>
</tr>
<tr>
<td>Apduhan Bernady</td>
<td>Kyushu Sangyo University, Japan</td>
</tr>
<tr>
<td>Ascenzi Daniela</td>
<td>University of Trento, Italy</td>
</tr>
<tr>
<td>Asche Harmut</td>
<td>Hasso-Plattner-Institut für Digital Engineering GmbH, Germany</td>
</tr>
<tr>
<td>Aslan Burak Galip</td>
<td>Izmir Insitute of Technology, Turkey</td>
</tr>
<tr>
<td>Assumma Vanessa</td>
<td>Polytechnic University of Torino, Italy</td>
</tr>
<tr>
<td>Astoga Gino</td>
<td>UV, Chile</td>
</tr>
<tr>
<td>Atman Uslug Nilüfer</td>
<td>Manisa Celal Bayar University, Turkey</td>
</tr>
<tr>
<td>Behera Ranjan Kumar</td>
<td>National Institute of Technology, Rourkela, India</td>
</tr>
<tr>
<td>Badsha Shahriar</td>
<td>University of Nevada, USA</td>
</tr>
<tr>
<td>Bai Peng</td>
<td>University of Cagliari, Italy</td>
</tr>
<tr>
<td>Baia Alina-Elena</td>
<td>University of Perugia, Italy</td>
</tr>
<tr>
<td>Balacco Gabriella</td>
<td>Polytechnic University of Bari, Italy</td>
</tr>
<tr>
<td>Balci Birim</td>
<td>Celal Bayar University, Turkey</td>
</tr>
<tr>
<td>Balena Pasquale</td>
<td>Polytechnic University of Bari, Italy</td>
</tr>
<tr>
<td>Balletto Ginevra</td>
<td>University of Cagliari, Italy</td>
</tr>
<tr>
<td>Balucani Nadia</td>
<td>University of Perugia, Italy</td>
</tr>
<tr>
<td>Bansal Megha</td>
<td>Delhi University, India</td>
</tr>
<tr>
<td>Barazzetti Luigi</td>
<td>Polytechnic University of Milan, Italy</td>
</tr>
<tr>
<td>Barreto Jeniffer</td>
<td>Istituto Superior Técnico, Portugal</td>
</tr>
<tr>
<td>Basbas Socrates</td>
<td>Aristotle University of Thessaloniki, Greece</td>
</tr>
</tbody>
</table>
Coni Mauro University of Cagliari, Italy
Corcoran Padraig Cardiff University, UK
Cornelio Antonella Università degli Studi di Brescia, Italy
Correia Aldina ESTG-PPorto, Portugal
Correia Eliseete University of Trás-os-Montes and Alto Douro, Portugal
Correia Florbela Polytechnic Institute of Viana do Castelo, Portugal
Costa Lino Universidade do Minho, Portugal
Costa e Silva Eliana ESTG-P Porto, Portugal
Costantini Alessandro INFN, Italy
Crespi Mattia University of Roma, Italy
Cuca Branka Polytechnic University of Milano, Italy
De Doncker Elise Western Michigan University, USA
De Macedo Mourelle Luiza State University of Rio de Janeiro, Brazil
Daisaka Hiroshi Hitotsubashi University, Japan
Daldanise Gaia CNR, Italy
Danese Maria CNR-ISPC, Italy
Daniele Bartoli University of Perugia, Italy
Datola Giulia Polytechnic University of Torino, Italy
De Luca Giandomenico University of Reggio Calabria, Italy
De Lucia Caterina University of Foggia, Italy
De Morais Barroca Filho Federal University of Rio Grande do Norte, Brazil

Itamir
De Petris Samuele University of Torino, Italy
De Sá Alan Marinha do Brasil, Brazil
De Souto Marcilio LIFO, University of Orléans, France
De Vito Saverio ENEA, Italy
De Wilde Pieter University of Plymouth, UK
Degtyarev Alexander Saint Petersburg State University, Russia
Dell’Anna Federico Polytechnic University of Torino, Italy
Dell’Ovo Marta Polytechnic University of Milano, Italy
Della Mura Fernanda University of Naples, Italy
Deluka T. Aleksandra University of Rijeka, Croatia
Demartino Cristoforo Zhejiang University, China
Dereli Dursun Ahu Istanbul Commerce University, Turkey
Desogus Giulia University of Cagliari, Italy
Dettori Marco University of Sassari, Italy
Devai Frank London South Bank University, UK
Di Francesco Massimo University of Cagliari, Italy
Di Liddo Felicia Polytechnic University of Bari, Italy
Di Paola Gianluigi University of Molise, Italy
Di Pietro Antonio ENEA, Italy
Di Pinto Valerio University of Naples, Italy
Dias Joana University of Coimbra, Portugal
Dimas Isabel University of Coimbra, Portugal
Dirvanauskas Darius Kaunas University of Technology, Lithuania
Djordjevic Aleksandra University of Belgrade, Serbia
<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duma Doina Cristina</td>
<td>INFN-CNAF, Italy</td>
</tr>
<tr>
<td>Dumlu Demircioglu Emine</td>
<td>Yildiz Technical University, Turkey</td>
</tr>
<tr>
<td>Dursun Aziz</td>
<td>Virginia Tech University, USA</td>
</tr>
<tr>
<td>Dvarioniene Jolanta</td>
<td>Kaunas University of Technology, Lithuania</td>
</tr>
<tr>
<td>Errico Maurizio Francesco</td>
<td>University of Enna KORE, Italy</td>
</tr>
<tr>
<td>Ezugwu Absalom</td>
<td>University of KwaZulu-Natal, South Africa</td>
</tr>
<tr>
<td>Fattoruso Grazia</td>
<td>ENEA, Italy</td>
</tr>
<tr>
<td>Faginas-Lago Noelia</td>
<td>University of Perugia, Italy</td>
</tr>
<tr>
<td>Falanga Bolognesi</td>
<td>ARIESPACE, Italy</td>
</tr>
<tr>
<td>Salvatore</td>
<td></td>
</tr>
<tr>
<td>Falcinelli Stefano</td>
<td>University of Perugia, Italy</td>
</tr>
<tr>
<td>Farias Marcos</td>
<td>National Nuclear Energy Commission, Brazil</td>
</tr>
<tr>
<td>Farina Alessandro</td>
<td>University of Pisa, Italy</td>
</tr>
<tr>
<td>Feltnowski Marcin</td>
<td>Lodz University of Technology, Poland</td>
</tr>
<tr>
<td>Fernandes Florbela</td>
<td>Instituto Politecnico de Bragança, Portugal</td>
</tr>
<tr>
<td>Fernandes Paula Odete</td>
<td>Instituto Politécnico de Bragança, Portugal</td>
</tr>
<tr>
<td>Fernandez-Sanz Luis</td>
<td>University of Alcala, Spain</td>
</tr>
<tr>
<td>Ferreira Ana Cristina</td>
<td>University of Minho, Portugal</td>
</tr>
<tr>
<td>Ferreira Femanda</td>
<td>Porto, Portugal</td>
</tr>
<tr>
<td>Fiorini Lorena</td>
<td>University of L’Aquila, Italy</td>
</tr>
<tr>
<td>Flora Amedeo</td>
<td>University of Basilicata, Italy</td>
</tr>
<tr>
<td>Florez Hector</td>
<td>Universidad Distrital Francisco Jose de Caldas,</td>
</tr>
<tr>
<td></td>
<td>Colombia</td>
</tr>
<tr>
<td>Foddis Maria Laura</td>
<td>University of Cagliari, Italy</td>
</tr>
<tr>
<td>Fogli Daniela</td>
<td>University of Brescia, Italy</td>
</tr>
<tr>
<td>Fortunelli Martina</td>
<td>Pragma Engineering, Italy</td>
</tr>
<tr>
<td>Fragiacomo Massimo</td>
<td>University of L’Aquila, Italy</td>
</tr>
<tr>
<td>Franzoni Valentina</td>
<td>Perugia University, Italy</td>
</tr>
<tr>
<td>Fusco Giovanni</td>
<td>University of Cote d’Azur, France</td>
</tr>
<tr>
<td>Fyrogenis Ioannis</td>
<td>Aristotle University of Thessaloniki, Greece</td>
</tr>
<tr>
<td>Gorbachev Yuriy</td>
<td>Coddan Technologies LLC, Russia</td>
</tr>
<tr>
<td>Gabrielli Laura</td>
<td>Università Iuav di Venezia, Italy</td>
</tr>
<tr>
<td>Gallanos Theodore</td>
<td>Austrian Institute of Technology, Austria</td>
</tr>
<tr>
<td>Gamallo Belmonte Pablo</td>
<td>Universitat de Barcelona, Spain</td>
</tr>
<tr>
<td>Gankevich Ivan</td>
<td>Saint Petersburg State University, Russia</td>
</tr>
<tr>
<td>Garau Chiara</td>
<td>University of Cagliari, Italy</td>
</tr>
<tr>
<td>Garcia Para Ernesto</td>
<td>Universidad del Pais Vasco, EHU, Spain</td>
</tr>
<tr>
<td>Gargano Riccardo</td>
<td>Universidade de Brasilia, Brazil</td>
</tr>
<tr>
<td>Gavrilova Marina</td>
<td>University of Calgary, Canada</td>
</tr>
<tr>
<td>Georgiadis Georgios</td>
<td>Aristotle University of Thessaloniki, Greece</td>
</tr>
<tr>
<td>Gervasi Osvaldo</td>
<td>University of Perugia, Italy</td>
</tr>
<tr>
<td>Giano Salvatore Ivo</td>
<td>University of Basilicata, Italy</td>
</tr>
<tr>
<td>Gil Jorge</td>
<td>Chalmers University, Sweden</td>
</tr>
<tr>
<td>Gioia Andrea</td>
<td>Polytechnic University of Bari, Italy</td>
</tr>
<tr>
<td>Gioia Dario</td>
<td>ISPC-CNT, Italy</td>
</tr>
</tbody>
</table>
Giordano Ludovica
Giorgi Giacomo
Giovane di Girasole
Eleonora
Giovinazzi Sonia
Giresini Linda
Giuffrida Salvatore
Golubchikov Oleg
Gonçalves A. Manuela
Gorgoglione Angela
Goyal Rinkaj
Grishkin Valery
Guerra Eduardo
Guerrero Abel
Gulseven Osman
Gupta Brij
Guveyi Elein
Gülen Kemal Güven
Haddad Sandra
Hanzl Malgorzata
Hegedus Peter
Hendrix Eligius M. T.
Higaki Hiroaki
Hossain Syeda Sumbul
Iacovino Chiara
Iakushkin Oleg
Iannuzzo Antonino
Idri Ali
Ignaccolo Matteo
Illover Oana-Ramona
Isola Federica
Jankovic Marija
Jorge Ana Maria
Kanamori Issaku
Kapenga John
Karabulut Korhan
Karaca Yeliz
Karami Ali
Kienhofer Frank
Kim Tai-hoon
Kimura Shuhei
Kirillov Denis
Korkhov Vladimir
Koszewski Krzysztof
Krzysztofik Sylwia

ENEA, Italy
University of Perugia, Italy
CNR-IRISS, Italy

ENEA, Italy
University of Pisa, Italy
University of Catania, Italy
Cardiff University, UK
University of Minho, Portugal
Universidad de la República, Uruguay
IPU, Delhi, India
Saint Petersburg State University, Russia
Free University of Bozen-Bolzano, Italy
University of Guanajuato, Mexico
American University of The Middle East, Kuwait
National Institute of Technology, Kurukshetra, India
Yildiz Teknik University, Turkey
Namk Kemal University, Turkey
Arab Academy for Science, Technology and Maritime Transport, Egypt
Lodz University of Technology, Poland
University of Szeged, Hungary
Universidad de Málaga, Spain
Tokyo Denki University, Japan
Daffodil International University, Bangladesh
University of Basilicata, Italy
Saint Petersburg State University, Russia
ETH Zurich, Switzerland
University Mohammed V, Morocco
University of Catania, Italy
Babeş-Bolyai University, Romania
University of Cagliari, Italy
CERTH, Greece
Instituto Politécnico de Lisboa, Portugal
RIKEN Center for Computational Science, Japan
Western Michigan University, USA
Yasar University, Turkey
University of Massachusetts Medical School, USA
University of Guilan, Iran
WITS, South Africa
Beijing Jiaotong University, China
Tottori University, Japan
Saint Petersburg State University, Russia
Saint Petersburg University, Russia
Warsaw University of Technology, Poland
Lodz University of Technology, Poland
<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kulabukho Natalia</td>
<td>Saint Petersburg State University, Russia</td>
</tr>
<tr>
<td>Kulkarni Shrinivas B.</td>
<td>SDM College of Engineering and Technology, Dharwad, India</td>
</tr>
<tr>
<td>Kwiecinski Krystian</td>
<td>Warsaw University of Technology, Poland</td>
</tr>
<tr>
<td>Kyvelou Stella</td>
<td>Panteion University of Social and Political Sciences, Greece</td>
</tr>
<tr>
<td>Körtting Thales</td>
<td>INPE, Brazil</td>
</tr>
<tr>
<td>Lal Niranjan</td>
<td>Mody University of Science and Technology, India</td>
</tr>
<tr>
<td>Lazzari Maurizio</td>
<td>CNR-ISPC, Italy</td>
</tr>
<tr>
<td>Leon Marcelo</td>
<td>Asociacion de Becarios del Ecuador, Ecuador</td>
</tr>
<tr>
<td>La Rocca Ludovica</td>
<td>University of Naples, Italy</td>
</tr>
<tr>
<td>La Rosa Daniele</td>
<td>University of Catania, Italy</td>
</tr>
<tr>
<td>Lai Sabrina</td>
<td>University of Cagliari, Italy</td>
</tr>
<tr>
<td>Lalenis Konstantinos</td>
<td>University of Thessaly, Greece</td>
</tr>
<tr>
<td>Lannon Simon</td>
<td>Cardiff University, UK</td>
</tr>
<tr>
<td>Lasaponara Rosa</td>
<td>CNR, Italy</td>
</tr>
<tr>
<td>Lee Chien-Sing</td>
<td>Sunway University, Malaysia</td>
</tr>
<tr>
<td>Lemus-Romani José</td>
<td>Pontificia Universidad Católica de Valparaiso, Chile</td>
</tr>
<tr>
<td>Leone Federica</td>
<td>University of Cagliari, Italy</td>
</tr>
<tr>
<td>Li Yuanxi</td>
<td>Hong Kong Baptist University, China</td>
</tr>
<tr>
<td>Locurcio Marco</td>
<td>Polytechnic University of Bari, Italy</td>
</tr>
<tr>
<td>Lombardi Andrea</td>
<td>University of Perugia, Italy</td>
</tr>
<tr>
<td>Lopez Gayarre Fernando</td>
<td>University of Oviedo, Spain</td>
</tr>
<tr>
<td>Lops Pasquale</td>
<td>University of Bari, Italy</td>
</tr>
<tr>
<td>Lourenço Vanda</td>
<td>Universidade Nova de Lisboa, Portugal</td>
</tr>
<tr>
<td>Luviano José Luis</td>
<td>University of Guanajuato, Mexico</td>
</tr>
<tr>
<td>Maltese Antonino</td>
<td>University of Palermo, Italy</td>
</tr>
<tr>
<td>Magni Riccardo</td>
<td>Pragma Engineering, Italy</td>
</tr>
<tr>
<td>Maheshwari Anil</td>
<td>Carleton University, Canada</td>
</tr>
<tr>
<td>Maja Roberto</td>
<td>Polytechnic University of Milano, Italy</td>
</tr>
<tr>
<td>Malik Shaveta</td>
<td>Terna Engineering College, India</td>
</tr>
<tr>
<td>Maltinti Francesca</td>
<td>University of Cagliari, Italy</td>
</tr>
<tr>
<td>Mandado Marcos</td>
<td>University of Vigo, Spain</td>
</tr>
<tr>
<td>Manganelli Benedetto</td>
<td>University of Basilicata, Italy</td>
</tr>
<tr>
<td>Mangiameli Michele</td>
<td>University of Catania, Italy</td>
</tr>
<tr>
<td>Maraschin Clarice</td>
<td>Universidade Federal do Rio Grande do Sul, Brazil</td>
</tr>
<tr>
<td>Marigorta Ana Maria</td>
<td>Universidad de Las Palmas de Gran Canaria, Spain</td>
</tr>
<tr>
<td>Markov Krassimir</td>
<td>Institute of Electrical Engineering and Informatics, Bulgaria</td>
</tr>
<tr>
<td>Martellozzo Federico</td>
<td>University of Firenze, Italy</td>
</tr>
<tr>
<td>Marucci Alessandro</td>
<td>University of L’Aquila, Italy</td>
</tr>
<tr>
<td>Masini Nicola</td>
<td>IBAM-CNR, Italy</td>
</tr>
<tr>
<td>Matsufuru Hideo</td>
<td>High Energy Accelerator Research Organization (KEK), Japan</td>
</tr>
<tr>
<td>Matteucci Ilaria</td>
<td>CNR, Italy</td>
</tr>
<tr>
<td>Mauro D’Apuzzo</td>
<td>University of Cassino and Southern Lazio, Italy</td>
</tr>
<tr>
<td>Name</td>
<td>Institution</td>
</tr>
<tr>
<td>------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Mazzarella Chiara</td>
<td>University of Naples, Italy</td>
</tr>
<tr>
<td>Mazzarino Marco</td>
<td>University of Venice, Italy</td>
</tr>
<tr>
<td>Mazzoni Augusto</td>
<td>University of Roma, Italy</td>
</tr>
<tr>
<td>Mele Roberta</td>
<td>University of Naples, Italy</td>
</tr>
<tr>
<td>Menezes Raquel</td>
<td>University of Minho, Portugal</td>
</tr>
<tr>
<td>Menghini Antonio</td>
<td>Aarhus Geofisica, Italy</td>
</tr>
<tr>
<td>Mengoni Paolo</td>
<td>University of Florence, Italy</td>
</tr>
<tr>
<td>Merlino Angelo</td>
<td>Università degli Studi Mediterranea, Italy</td>
</tr>
<tr>
<td>Milani Alfredo</td>
<td>University of Perugia, Italy</td>
</tr>
<tr>
<td>Milic Vladimir</td>
<td>University of Zagreb, Croatia</td>
</tr>
<tr>
<td>Millham Richard</td>
<td>Durban University of Technology, South Africa</td>
</tr>
<tr>
<td>Mishra B.</td>
<td>University of Szeged, Hungary</td>
</tr>
<tr>
<td>Misra Sanjay</td>
<td>Covenant University, Nigeria</td>
</tr>
<tr>
<td>Modica Giuseppe</td>
<td>University of Reggio Calabria, Italy</td>
</tr>
<tr>
<td>Mohagheghi</td>
<td>Vali-e-Asr University of Rafsanjan, Iran</td>
</tr>
<tr>
<td>Mohammadsadegh</td>
<td>University of Tehran, Iran</td>
</tr>
<tr>
<td>Molaei Qelichi Mohamad</td>
<td>University of Cassino and Southern Lazio, Italy</td>
</tr>
<tr>
<td>Molinara Mario</td>
<td>University of Torino, Italy</td>
</tr>
<tr>
<td>Monteiro Vitor</td>
<td>University of Minho, Portugal</td>
</tr>
<tr>
<td>Montisci Augusto</td>
<td>University of Cagliari, Italy</td>
</tr>
<tr>
<td>Morano Pierluigi</td>
<td>Polytechnic University of Bari, Italy</td>
</tr>
<tr>
<td>Morganti Alessandro</td>
<td>Polytechnic University of Milano, Italy</td>
</tr>
<tr>
<td>Mosca Erica Isa</td>
<td>Polytechnic University of Milan, Italy</td>
</tr>
<tr>
<td>Moura Ricardo</td>
<td>CMA-FCT, New University of Lisbon, Portugal</td>
</tr>
<tr>
<td>Mourao Maria</td>
<td>Polytechnic Institute of Viana do Castelo, Portugal</td>
</tr>
<tr>
<td>Mourão Moura Ana Clara</td>
<td>Federal University of Minas Gerais, Brazil</td>
</tr>
<tr>
<td>Mrak Iva</td>
<td>University of Rijeka, Croatia</td>
</tr>
<tr>
<td>Murgante Beniamino</td>
<td>University of Basilicata, Italy</td>
</tr>
<tr>
<td>Muñoz Mirna</td>
<td>Centro de Investigacion en Matematicas, Mexico</td>
</tr>
<tr>
<td>Nedjah Nadia</td>
<td>State University of Rio de Janeiro, Brazil</td>
</tr>
<tr>
<td>Nakasato Naohito</td>
<td>University of Aizu, Japan</td>
</tr>
<tr>
<td>Natário Isabel Cristina</td>
<td>Universidade Nova de Lisboa, Portugal</td>
</tr>
<tr>
<td>Nesticò Antonio</td>
<td>Università degli Studi di Salerno, Italy</td>
</tr>
<tr>
<td>Neto Ana Maria</td>
<td>Universidade Federal do ABC, Brazil</td>
</tr>
<tr>
<td>Nicolosi Vittorio</td>
<td>University of Rome, Italy</td>
</tr>
<tr>
<td>Nikiforiadis Andreas</td>
<td>Aristotle University of Thessaloniki, Greece</td>
</tr>
<tr>
<td>Nocera Fabrizio</td>
<td>University of Illinois at Urbana-Champaign, USA</td>
</tr>
<tr>
<td>Nocera Silvio</td>
<td>IUAV, Italy</td>
</tr>
<tr>
<td>Nogueira Marcelo</td>
<td>Paulista University, Brazil</td>
</tr>
<tr>
<td>Nolé Gabriele</td>
<td>CNR, Italy</td>
</tr>
<tr>
<td>Nuno Beirao Jose</td>
<td>University of Lisbon, Portugal</td>
</tr>
<tr>
<td>Okewu Emma</td>
<td>University of Alcala, Spain</td>
</tr>
<tr>
<td>Oluwasefunmi Arogundade</td>
<td>Academy of Mathematics and System Science, China</td>
</tr>
<tr>
<td>Oppio Alessandra</td>
<td>Polytechnic University of Milan, Italy</td>
</tr>
<tr>
<td>P. Costa M. Fernanda</td>
<td>University of Minho, Portugal</td>
</tr>
<tr>
<td>Name</td>
<td>Institution</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Parisot Olivier</td>
<td>Luxembourg Institute of Science and Technology, Luxembourg</td>
</tr>
<tr>
<td>Paddeu Daniela</td>
<td>UWE, UK</td>
</tr>
<tr>
<td>Paio Alexandra</td>
<td>ISCTE-Instituto Universitário de Lisboa, Portugal</td>
</tr>
<tr>
<td>Palme Massimo</td>
<td>Catholic University of the North, Chile</td>
</tr>
<tr>
<td>Panaro Simona</td>
<td>University of Portsmouth, UK</td>
</tr>
<tr>
<td>Pancham Jay</td>
<td>Durban University of Technology, South Africa</td>
</tr>
<tr>
<td>Pantazis Dimos</td>
<td>University of West Attica, Greece</td>
</tr>
<tr>
<td>Papa Enrica</td>
<td>University of Westminster, UK</td>
</tr>
<tr>
<td>Pardede Eric</td>
<td>La Trobe University, Australia</td>
</tr>
<tr>
<td>Perchinunno Paola</td>
<td>University of Cagliari, Italy</td>
</tr>
<tr>
<td>Perdicoulis Teresa</td>
<td>UTAD, Portugal</td>
</tr>
<tr>
<td>Pereira Ana</td>
<td>Polytechnic Institute of Bragança, Portugal</td>
</tr>
<tr>
<td>Perri Damiano</td>
<td>University of Perugia, Italy</td>
</tr>
<tr>
<td>Petrelli Marco</td>
<td>University of Rome, Italy</td>
</tr>
<tr>
<td>Pierri Francesca</td>
<td>University of Perugia, Italy</td>
</tr>
<tr>
<td>Piersanti Antonio</td>
<td>ENEA, Italy</td>
</tr>
<tr>
<td>Pilogallo Angela</td>
<td>University of Basilicata, Italy</td>
</tr>
<tr>
<td>Pinna Francesco</td>
<td>University of Cagliari, Italy</td>
</tr>
<tr>
<td>Pinto Telmo</td>
<td>University of Coimbra, Portugal</td>
</tr>
<tr>
<td>Piroddi Luca</td>
<td>University of Cagliari, Italy</td>
</tr>
<tr>
<td>Poli Giuliano</td>
<td>University of Naples, Italy</td>
</tr>
<tr>
<td>Polidoro Maria João</td>
<td>Polytechnic Institute of Porto, Portugal</td>
</tr>
<tr>
<td>Polignano Marco</td>
<td>University of Bari, Italy</td>
</tr>
<tr>
<td>Politis Ioannis</td>
<td>Aristotle University of Thessaloniki, Greece</td>
</tr>
<tr>
<td>Pollino Maurizio</td>
<td>ENEA, Italy</td>
</tr>
<tr>
<td>Popoola Segun</td>
<td>Covenant University, Nigeria</td>
</tr>
<tr>
<td>Pratelli Antonio</td>
<td>University of Pisa, Italy</td>
</tr>
<tr>
<td>Praticò Salvatore</td>
<td>University of Reggio Calabria, Italy</td>
</tr>
<tr>
<td>Prevalti Mattia</td>
<td>Polytechnic University of Milan, Italy</td>
</tr>
<tr>
<td>Puppio Mario Lucio</td>
<td>University of Pisa, Italy</td>
</tr>
<tr>
<td>Puttini Ricardo</td>
<td>Universidade de Brasília, Brazil</td>
</tr>
<tr>
<td>Que Zeli</td>
<td>Nanjing Forestry University, China</td>
</tr>
<tr>
<td>Queiroz Gilberto</td>
<td>INPE, Brazil</td>
</tr>
<tr>
<td>Regalbuto Stefania</td>
<td>University of Naples, Italy</td>
</tr>
<tr>
<td>Ravanelli Roberta</td>
<td>University of Roma, Italy</td>
</tr>
<tr>
<td>Recanatesi Fabio</td>
<td>University of Tuscia, Italy</td>
</tr>
<tr>
<td>Reis Ferreira Gomes Karine</td>
<td>INPE, Brazil</td>
</tr>
<tr>
<td>Reis Marco</td>
<td>University of Coimbra, Portugal</td>
</tr>
<tr>
<td>Reitano Maria</td>
<td>University of Naples, Italy</td>
</tr>
<tr>
<td>Rencelj Marko</td>
<td>University of Maribor, Slovenia</td>
</tr>
<tr>
<td>Respondek Jerzy</td>
<td>Silesian University of Technology, Poland</td>
</tr>
<tr>
<td>Rimola Albert</td>
<td>Universitat Autònoma de Barcelona, Spain</td>
</tr>
<tr>
<td>Rocha Ana</td>
<td>University of Minho, Portugal</td>
</tr>
<tr>
<td>Rocha Humberto</td>
<td>University of Coimbra, Portugal</td>
</tr>
<tr>
<td>Rocha Maria Celia</td>
<td>UFBA Bahia, Brazil</td>
</tr>
<tr>
<td>Name</td>
<td>Institution</td>
</tr>
<tr>
<td>------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Rocha Maria Clara</td>
<td>ESTES Coimbra, Portugal</td>
</tr>
<tr>
<td>Rocha Miguel</td>
<td>University of Minho, Portugal</td>
</tr>
<tr>
<td>Rodriguez Guillermo</td>
<td>UNICEN, Argentina</td>
</tr>
<tr>
<td>Rodriguez González</td>
<td>Universidad Carlos III de Madrid, Spain</td>
</tr>
<tr>
<td>Alejandro</td>
<td>INFN, Italy</td>
</tr>
<tr>
<td>Ronchieri Elisabetta</td>
<td>University of Perugia, Italy</td>
</tr>
<tr>
<td>Rosi Marzio</td>
<td>Università Politecnica delle Marche, Italy</td>
</tr>
<tr>
<td>Rotondo Francesco</td>
<td>University of Pisa, Italy</td>
</tr>
<tr>
<td>Rusci Simone</td>
<td>University of Basilicata, Italy</td>
</tr>
<tr>
<td>Saganeiti Lucia</td>
<td>University of Cagliari, Italy</td>
</tr>
<tr>
<td>Saia Valeria</td>
<td>UPCV, Chile</td>
</tr>
<tr>
<td>Salas Agustin</td>
<td>University of Palermo, Italy</td>
</tr>
<tr>
<td>Salvo Giuseppe</td>
<td>University of Torino, Italy</td>
</tr>
<tr>
<td>Sarvia Filippo</td>
<td>University of Perugia, Italy</td>
</tr>
<tr>
<td>Santana Francesco</td>
<td>INPE, Brazil</td>
</tr>
<tr>
<td>Santangelo Michele</td>
<td>Università per Stranieri di Perugia, Italy</td>
</tr>
<tr>
<td>Santini Francesco</td>
<td>Polytechnic University of Bari, Italy</td>
</tr>
<tr>
<td>Santos Rafael</td>
<td>CUET, Bangladesh</td>
</tr>
<tr>
<td>Santucci Valentino</td>
<td>Politecnico Milano, Italy</td>
</tr>
<tr>
<td>Saponaro Mirko</td>
<td>University of Basilicata, Italy</td>
</tr>
<tr>
<td>Sarker Iqbal</td>
<td>University of Naples, Italy</td>
</tr>
<tr>
<td>Scaioni Marco</td>
<td>University of Salerno, Italy</td>
</tr>
<tr>
<td>Scorza Francesco</td>
<td>Swami Shraddhanand College, India</td>
</tr>
<tr>
<td>Scotto di Perta Ester</td>
<td>University of Michigan, USA</td>
</tr>
<tr>
<td>Sebillo Monica</td>
<td>Zhejiang University of Technology, China</td>
</tr>
<tr>
<td>Sharma Meera</td>
<td>Centre of Research and Technology Hellas (CERTH), Greece</td>
</tr>
<tr>
<td>Shen Jie</td>
<td>ESTeSL-IPL, Portugal</td>
</tr>
<tr>
<td>Shou Huahao</td>
<td>Polytechnic Institute of Cavado and Ave, Portugal</td>
</tr>
<tr>
<td>Siavvas Miltiadis</td>
<td>Universidade Federal do ABC, Brazil</td>
</tr>
<tr>
<td>Silva Carina</td>
<td>Instituto Politécnico de Viana do Castelo, Portugal</td>
</tr>
<tr>
<td>Silva Joao Carlos</td>
<td>University of Florence, Italy</td>
</tr>
<tr>
<td>Silva Junior Luneque</td>
<td>University of Zagreb, Croatia</td>
</tr>
<tr>
<td>Silva Ângela</td>
<td>Master-Up, Italy</td>
</tr>
<tr>
<td>Simonetti Marco</td>
<td>Università degli Studi della Tuscia, Italy</td>
</tr>
<tr>
<td>Situm Zeljko</td>
<td>University of Algarve, Portugal</td>
</tr>
<tr>
<td>Skoutheris Dimitrios</td>
<td>Cardiff University, UK</td>
</tr>
<tr>
<td>Solano Francesco</td>
<td>Polytechnic University of Bari, Italy</td>
</tr>
<tr>
<td>Somma Maria</td>
<td>University of Lisbon, Portugal</td>
</tr>
<tr>
<td>Sonnessa Alberico</td>
<td>University of Algarve, Portugal</td>
</tr>
<tr>
<td>Sousa Lisete</td>
<td>Saint Petersburg State University, Russia</td>
</tr>
<tr>
<td>Sousa Nelson</td>
<td>National Technical University of Athens, Greece</td>
</tr>
<tr>
<td>Name</td>
<td>University/Institution</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Šurdonja Sanja</td>
<td>University of Rijeka, Croatia</td>
</tr>
<tr>
<td>Sviatov Kirill</td>
<td>Ulyanovsk State Technical University, Russia</td>
</tr>
<tr>
<td>Sánchez de Merás Alfredo</td>
<td>Universitat de Valencia, Spain</td>
</tr>
<tr>
<td>Takahashi Daisuke</td>
<td>University of Tsukuba, Japan</td>
</tr>
<tr>
<td>Tanaka Kazuaki</td>
<td>Kyushu Institute of Technology, Japan</td>
</tr>
<tr>
<td>Taniar David</td>
<td>Monash University, Australia</td>
</tr>
<tr>
<td>Tapia McClung Rodrigo</td>
<td>Centro de Investigación en Ciencias de Información Geoespacial, Mexico</td>
</tr>
<tr>
<td>Tarantino Eufemia</td>
<td>Polytechnic University of Bari, Italy</td>
</tr>
<tr>
<td>Tasso Sergio</td>
<td>University of Perugia, Italy</td>
</tr>
<tr>
<td>Teixeira Ana Paula</td>
<td>University of Trás-os-Montes and Alto Douro, Portugal</td>
</tr>
<tr>
<td>Teixeira Senhorinha</td>
<td>University of Minho, Portugal</td>
</tr>
<tr>
<td>Tengku Izhar Tengku Adil</td>
<td>Universiti Teknologi MARA, Malaysia</td>
</tr>
<tr>
<td>Teodoro Maria Filomena</td>
<td>University of Lisbon, Portuguese Naval Academy, Portugal</td>
</tr>
<tr>
<td>Tesoriere Giovanni</td>
<td>University of Enna KORE, Italy</td>
</tr>
<tr>
<td>Thangeda Amarendra Rao</td>
<td>Botho University, Botswana</td>
</tr>
<tr>
<td>Tonbul Gokchan</td>
<td>Atilim University, Turkey</td>
</tr>
<tr>
<td>Toraldo Emanuele</td>
<td>Polytechnic University of Milan, Italy</td>
</tr>
<tr>
<td>Torre Carmelo Maria</td>
<td>Polytechnic University of Bari, Italy</td>
</tr>
<tr>
<td>Torriere Francesca</td>
<td>University of Naples, Italy</td>
</tr>
<tr>
<td>Torrisi Vincenza</td>
<td>University of Catania, Italy</td>
</tr>
<tr>
<td>Toscano Domenico</td>
<td>University of Naples, Italy</td>
</tr>
<tr>
<td>Totaro Vincenzo</td>
<td>Polytechnic University of Bari, Italy</td>
</tr>
<tr>
<td>Trigo Antonio</td>
<td>Instituto Politécnico de Coimbra, Portugal</td>
</tr>
<tr>
<td>Trunfio Giuseppe A.</td>
<td>University of Sassari, Italy</td>
</tr>
<tr>
<td>Trung Pham</td>
<td>HCMUT, Vietnam</td>
</tr>
<tr>
<td>Tsoukalas Dimitrios</td>
<td>Centre of Research and Technology Hellas (CERTH), Greece</td>
</tr>
<tr>
<td>Tucci Biagio</td>
<td>CNR, Italy</td>
</tr>
<tr>
<td>Tucker Simon</td>
<td>Liverpool John Moores University, UK</td>
</tr>
<tr>
<td>Tuñon Íñaki</td>
<td>Universidad de Valencia, Spain</td>
</tr>
<tr>
<td>Tyagi Amit Kumar</td>
<td>Vellore Institute of Technology, India</td>
</tr>
<tr>
<td>Uchibayashi Toshihiro</td>
<td>Kyushu University, Japan</td>
</tr>
<tr>
<td>Ueda Takahiro</td>
<td>Seikei University, Japan</td>
</tr>
<tr>
<td>Ugliengo Piero</td>
<td>University of Torino, Italy</td>
</tr>
<tr>
<td>Valente Ettore</td>
<td>University of Naples, Italy</td>
</tr>
<tr>
<td>Vallverdu Jordi</td>
<td>University Autonoma Barcelona, Spain</td>
</tr>
<tr>
<td>Vanelslander Thierry</td>
<td>University of Antwerp, Belgium</td>
</tr>
<tr>
<td>Vasyunin Dmitry</td>
<td>T-Systems RUS, Russia</td>
</tr>
<tr>
<td>Vazart Fanny</td>
<td>University of Grenoble Alpes, France</td>
</tr>
<tr>
<td>Vecchiocattivì Franco</td>
<td>University of Perugia, Italy</td>
</tr>
<tr>
<td>Vekeman Jelle</td>
<td>Vrije Universiteit Brussel (VUB), Belgium</td>
</tr>
<tr>
<td>Verde Rosanna</td>
<td>Università degli Studi della Campania, Italy</td>
</tr>
<tr>
<td>Vermaseren Jos</td>
<td>Nikhef, The Netherlands</td>
</tr>
<tr>
<td>Name</td>
<td>Institution and Location</td>
</tr>
<tr>
<td>------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Vignoli Giulio</td>
<td>University of Cagliari, Italy</td>
</tr>
<tr>
<td>Vizzari Marco</td>
<td>University of Perugia, Italy</td>
</tr>
<tr>
<td>Vodyaaho Alexander</td>
<td>Saint Petersburg State Electrotechnical University, Russia</td>
</tr>
<tr>
<td>Vona Marco</td>
<td>University of Basilicata, Italy</td>
</tr>
<tr>
<td>Waluyo Agustinus Borgy</td>
<td>Monash University, Australia</td>
</tr>
<tr>
<td>Wen Min</td>
<td>Xi’an Jiaotong-Liverpool University, China</td>
</tr>
<tr>
<td>Westad Frank</td>
<td>Norwegian University of Science and Technology, Norway</td>
</tr>
<tr>
<td>Yuasa Fukuko</td>
<td>KEK, Japan</td>
</tr>
<tr>
<td>Yadav Rekha</td>
<td>KL University, India</td>
</tr>
<tr>
<td>Yamu Claudia</td>
<td>University of Groningen, The Netherlands</td>
</tr>
<tr>
<td>Yao Fenghui</td>
<td>Tennessee State University, USA</td>
</tr>
<tr>
<td>Yañez Manuel</td>
<td>Universidad Autónoma de Madrid, Spain</td>
</tr>
<tr>
<td>Yoki Karl</td>
<td>Daegu Catholic University, South Korea</td>
</tr>
<tr>
<td>Zamperlin Paola</td>
<td>University of Pisa, Italy</td>
</tr>
<tr>
<td>Zekeng Ndadji Milliam</td>
<td>University of Dschang, Cameroon</td>
</tr>
<tr>
<td>Maxime</td>
<td></td>
</tr>
<tr>
<td>Žemlička Michal</td>
<td>Charles University, Czech Republic</td>
</tr>
<tr>
<td>Zita Sampaio Alcinia</td>
<td>Technical University of Lisbon, Portugal</td>
</tr>
<tr>
<td>Živkovič Ljiljana</td>
<td>Ministry of Construction, Transport and Infrastructure and Institute of Architecture and Urban & Spatial Planning of Serbia, Serbia</td>
</tr>
<tr>
<td>Zoppi Corrado</td>
<td>University of Cagliari, Italy</td>
</tr>
<tr>
<td>Zucca Marco</td>
<td>Polytechnic University of Milan, Italy</td>
</tr>
<tr>
<td>Zullo Francesco</td>
<td>University of L’Aquila, Italy</td>
</tr>
</tbody>
</table>
Contents – Part VII

International Workshop on Smart Ports – Technologies and Challenges (SmartPorts 2020)

Use of ICT for More Efficient Port Operations: The Experience of the EASYLOG Project .. 3
 Patrizia Serra and Gianfranco Fancello

Treatment of Port Wastes According to the Paradigm of the Circular Economy ... 15
 Paolo Fadda, Antonio Viola, Michele Carta, Debora Secci, Gianfranco Fancello, and Patrizia Serra

Processes for Noise Reduction in Urban Port Fronts .. 29
 Federico Sollai, Roberto Baccoli, Andrea Medda, Gianfranco Fancello, Patrizia Serra, and Paolo Fadda

Tanger MED SEZs: A Logistic and Industrial Hub in the Western Mediterranean .. 40
 Massimiliano Bencardino and Vincenzo Esposito

Smart Marinas. The Case of Metropolitan City of Cagliari ... 51
 Luigi Mundula, Mara Ladu, Ginevra Balletto, and Alessandra Milesi

Port-City Shared Areas to Improve Freight Transport Sustainability 67
 Nadia Giuffrida, Matteo Ignaccolo, Giuseppe Inturri, and Vincenza Torrisi

Decision-Making for Maritime Networks: Evaluating Corporate and Social Profitability of an Integrated Short Sea Shipping Network in the Upper Tyrrenian Sea ... 83
 Gianfranco Fancello, Patrizia Serra, Michele Carta, Valentina Aramu, and Paolo Fadda

On the Automation of Ports and Logistics Chains in the Adriatic Region 96
 Luca Braidotti, Marco Mazzarino, Maurizio Cocciacich, and Vittorio Bucci
International Workshop on Sustainability Performance Assessment: Models, Approaches and Applications toward Interdisciplinary and Integrated Solutions (SPA 2020)

Better Deciding Together: Citizens’ Trust in Transport and Tourism Public Administration Policies ... 115
Francesca Pagliara and Lucia Russo

Simplified Approach for Liquefaction Risk Assessment of Transportation Systems: Preliminary Outcomes .. 130
Mauro D’Apuzzo, Azzurra Evangelisti, Giuseppe Modoni,
Rose-Line Spacagna, Luca Paolella, Daniela Santilli,
and Vittorio Nicolosi

Application to a Player Operating in Italy of an AHP Model for the Identification of the Most Advantageous Technical Alternatives in the Management of the Integrated Water Service ... 146
Maria Macchiaroli, Luigi Dolores, Vincenzo Pellechcia,
Gianluigi De Mare, Antonio Nesticò, and Gabriella Maselli

Spatial Knowledge in Large-Scale Environments: A Preliminary Planning-Oriented Study ... 162
Giulia Mastrodonato and Domenico Camarda

Assessing Integration Performance in Coastal and Marine Protected Areas. A Document-Based Approach .. 175
Sabrina Lai and Federica Leone

Water Management and Municipal Climate Adaptation Plans: A Preliminary Assessment for Flood Risks Management at Urban Scale 184
Simone Corrado, Benedetta Giannini, Luigi Santopietro,
Giuseppe Oliveto, and Francesco Scorza

Hybrid Oriented Sustainable Urban Development: A Pattern of Low-Carbon Access to Schools in the City of Potenza 193
Giovanni Fortunato, Francesco Scorza, and Beniamino Murgante

Green Chemistry, Circular Economy and Sustainable Development: An Operational Perspective to Scale Research Results in SMEs Practices 206
Iole Cerminara, Lucia Chiumiento, Maria Funicello, Paolo Lupattelli,
Patrizia Scafato, Francesco Scorza, and Stefano Superchi

The Design of an Urban Atlas to Spread Information Concerning the Growth of Anthropic Settlements in Basilicata Region 214
Giuseppe Faruolo, Luigi Santopietro, Lucia Saganeiti, Angela Pilogallo,
Francesco Scorza, and Beniamino Murgante
A Place-Based Approach for the SECAP of Potenza Municipality:
The Case of Green Spaces System

Luigi Santopietro and Francesco Scorza

International Workshop on Smart and Sustainable Island Communities (SSIC 2020)

Leveraging Underwater Cultural Heritage (UCH) Potential for Smart and Sustainable Development in Mediterranean Islands

Koutsi Dionisia and Anastasia Stratigea

Polycentrism and Insularity Metrics for In-Land Areas.

Laura Curatella and Francesco Scorza

A Service Network Design Problem for Freight Transportation in Port Cities

Massimo Di Francesco, Dennis Incollu, Claudia Porcu, and Simone Zanda

Tracing Sustainable Island Complexes in Response to Insularity Dilemmas _ Methodological Considerations

Yiota Theodora

Reticular Systems to Identify Aggregation and Attraction Potentials in Island Contexts. The Case Study of Sardinia (Italy)

Chiara Garau, Giulia Desogus, Federica Banchiero, and Pasquale Mistretta

Structural and Thermal Retrofitting of Masonry Walls: The Case of a School in Vittoria (RG)

Flavio Stochino, Mauro Sassu, and Fausto Mistretta

Beyond the Infrastructure. Sustainable Landscape Regeneration Through Greenways: Towards Project Guidelines for the Sardinia Island (Italy)

Valeria Saiu and Francesco Pinna

Accessibility Improvements and Place-Based Organization in the Island of Sardinia (Italy)

Mauro Coni, Chiara Garau, Francesca Maltinati, and Francesco Pinna

Sustainability of the Timber Supply Chain on the Island of Sardinia

Giovanna Concù

The Role of Parent Concrete in Recycled Aggregate Concrete

Luisa Pani, Lorena Francesconi, James Rombi, Flavio Stochino, and Fausto Mistretta
International Workshop on Science, Technologies and Policies to Innovate Spatial Planning (STP4P 2020)

Green Infrastructure and Private Property: The Crucial Relationship for the Sustainable Future of Cities ... 381
 Daniele La Rosa and Riccardo Privitera

A Big Data Platform for Smart and Sustainable Cities: Environmental Monitoring Case Studies in Europe 393
 Chiara Garau, Paolo Nesi, Irene Paoli, Michela Paolucci, and Paola Zamperlin

Challenges and Opportunities for the Historic Urban Landscape Planning.
The Sardinia Region Case Study ... 407
 Anna Maria Colavitti, Alessio Floris, and Sergio Serra

A Literature Review on Walkability and its Theoretical Framework.
Emerging Perspectives for Research Developments 422
 Alfonso Annunziata and Chiara Garau

International Workshop on New Frontiers for Strategic Urban Planning (StrategicUP 2020)

Cohesion Policies in Italian Metropolitan Cities. Evaluation and Challenges ... 441
 Ginevra Balletto, Luigi Mundula, Alessandra Milesi, and Mara Ladu

Environmental Dimension into Strategic Planning. The Case of Metropolitan City of Cagliari ... 456
 Maria Elena Palumbo, Luigi Mundula, Ginevra Balletto, Erika Bazzato, and Michela Marignani

Public Real Estate Assets and the Metropolitan Strategic Plan in Italy.
The Two Cases of Milan and Cagliari ... 472
 Mara Ladu, Ginevra Balletto, Alessandra Milesi, Luigi Mundula, and Giuseppe Borruso

International Workshop on Theoretical and Computational Chemistry and Its Applications (TCCMA 2020)

Carbon Capture and Separation from CO_2/N_2/H_2O Gaseous Mixtures in Bilayer Graphatriyne: A Molecular Dynamics Study 489
 Noelia Faginas-Lago, Yusuf Bramastya Apriliyanto, and Andrea Lombardi
Formamide Dehydration and Condensation on Acidic Montmorillonite: Mechanistic Insights from Ab-Initio Periodic Simulations
Stefano Pantaleone, Albert Rimola, Javier Navarro-Ruíz, Pierre Mignon, Mariona Sodupe, Piero Ugliengo, and Nadia Balucani

Gas Adsorption on Graphetriyne Membrane: Impact of the Induction Interaction Term on the Computational Cost
Emília Valença Ferreira de Aragão, Noelia Faginas-Lago, Yusuf Bramastya Apriliyanto, and Andrea Lombardi

Improvements to the G-Lorep Federation of Learning Object Repositories
Federico Sabbatini, Sergio Tasso, Simonetta Pallotelli, and Osvaldo Gervasi

Classification of Shapes and Deformations of Large Systems by Invariant Coordinates
Lombardi Andrea and Noelia Faginas-Lago

Binary Classification of Proteins by a Machine Learning Approach
Damiano Perri, Marco Simonetti, Andrea Lombardi, Noelia Faginas-Lago, and Osvaldo Gervasi

International Workshop on Tools and Techniques in Software Development Process (TTS DP 2020)

Evolution and Progress of Women’s Participation in the Ecuadorian Policy Period 2009–2019
Marcelo León, Wladimir Sosa, Angélica Guamán, Rodrigo Rivera, and Mireya Serrano

International Workshop on Urban Form Studies (UForm 2020)

Finding Centrality: Developing GIS-Based Analytical Tools for Active and Human-Oriented Centres
Yannis Paraskevopoulos and Yorgos N. Photis

Assessing Morphological Resilience. Methodological Challenges for Metropolitan Areas
Giovanni Fusco and Alessandro Venerandi
International Workshop on Urban Space Extended Accessibility
(USEAccessibility 2020)

“Sustainable Urban Mobility Plans”: Key Concepts and a Critical Revision
on SUMP Guidelines .. 613
 Vincenza Torrisi, Chiara Garau, Matteo Ignaccolo,
 and Giuseppe Inturri

The Growing Urban Accessibility: A Model to Measure the Car Sharing
Effectiveness Based on Parking Distances 629
 Tiziana Campisi, Matteo Ignaccolo, Giuseppe Inturri,
 Giovanni Tesoriere, and Vincenza Torrisi

An Exploratory Step to Evaluate the Pedestrian Flow
in Urban Environment ... 645
 Mauro D’Apuzzo, Daniela Santilli, Azzurra Evangelisti,
 Vincenzo Pelagalli, Orlando Montanaro, and Vittorio Nicolosi

On-Board Comfort of Different Age Passengers
and Bus-Lane Characteristics 658
 Mauro Coni, Francesca Maltinti, Francesco Pinna, Nicoletta Rassu,
 Chiara Garau, Benedetto Barabino, and Giulio Maternini

Vulnerable Users and Public Transport Service: Analysis on Expected
and Perceived Quality Data .. 673
 Francesca Maltinti, Nicoletta Rassu, Mauro Coni, Chiara Garau,
 Francesco Pinna, Roberto Devoto, and Benedetto Barabino

Accessibility to Local Public Transport in Cagliari with Focus
on the Elderly ... 690
 Rassu Nicoletta, Francesca Maltinti, Mauro Coni, Chiara Garau,
 Benedetto Barabino, Francesco Pinna, and Roberto Devoto

Beyond Architectural Barriers: Building a Bridge Between Disability
and Universal Design ... 706
 Francesco Pinna, Chiara Garau, Francesca Maltinti, and Mauro Coni

Extended Accessibility and Cultural Heritage: A New Approach to Fruition
and Conservation .. 722
 Francesco Pinna, Mattia Cogoni, Andrea Pinna,
 Giovanni Battista Cocco, and Caterina Giannattasio
International Workshop on Virtual and Augmented Reality and Applications (VRA 2020)

Wearable Device for Immersive Virtual Reality Control and Application in Upper Limbs Motor Rehabilitation 741
Mateus Michelin Jurioli, Alexandre Fonseca Brandao,
Bárbara Cristina Silva Guedes Martins, Eduardo do Valle Simões,
and Cláudio Fabino Motta Toledo

Alexandre Fonseca Brandão, Diego Roberto Colombo Dias,
Sávyo Toledo Machado Reis, Clovis Magri Cabreira,
Maria Cecilia Moraes Frade, Thomas Beltrame,
Marcelo de Paiva Guimarães, and Gabriela Castellano

Adjeryan Cartaxo Freitas, Diego Roberto Colombo Dias,
Alexandre Fonseca Brandão, Rita de Fátima Rodrigues Guimarães,
and Marcelo de Paiva Guimarães

An Immersive Open Source Environment Using Godot 784
Francesca Santucci, Federico Frenguelli, Alessandro De Angelis,
Ilaria Cuccaro, Damiano Perri, and Marco Simonetti

Teaching Math with the Help of Virtual Reality 799
Marco Simonetti, Damiano Perri, Natale Amato, and Osvaldo Gervasi

A Virtual Reality Simulator to Assist in Memory Management Lectures 810
Luiz Felipe Santos Freitas, Alex Sandro Rodrigues Ancioto,
Rita de Fátima Rodrigues Guimarães, Valéria Farinazzo Martins,
Diego Roberto Colombo Dias, and Marcelo de Paiva Guimarães

Motivational Evaluation of a Virtual Reality Simulator to Teach Disk-Scheduling Algorithms for Solid-State Drives (SSDs) 826
Alex Sandro Rodrigues Ancioto, Luiz Felipe Santos Freitas,
Diego Roberto Colombo Dias, Valéria Farinazzo Martins,
Alexandre Fonseca Brandão, and Marcelo de Paiva Guimarães

New Package in Maxima to Build Axonometric Projections from \(\mathbb{R}^4 \) to \(\mathbb{R}^3 \) and Visualize Objects Immersed in \(\mathbb{R}^4 \) 837
Emanuel E. Sobrino, Robert Ipanaquê, Ricardo Velezmore, and Josel A. Mechato
Contents – Part VII

International Workshop on Advanced and Computational Methods for Earth Science Applications (WACM4ES 2020)

Dam Break and Human Disaster: Córrego do Feijão, Brumadinho, MG

Pedro Benedito Casagrande, Maria Giovana Parisi,

Ana Clara Mourão Moura, Lourdes Manresa Camargos,

Camila Marques Zygner, Viviane da Silva Borges Barbosa,

Danilo Marques de Magalhães, and Gilberto Rodrigues da Silva

Self-organizing-Map Analysis of InSAR Time Series for the Early Warning of Structural Safety in Urban Areas ... 864

A. Montisci and Maria Cristina Porcu

Artificial Neural Networks Based Approach for Identification of Unknown Pollution Sources in Aquifers ... 877

Maria Laura Foddis and Augusto Montisci

Geophysical Modelling of a Sedimentary Portion of the White Volta Basin (Ghana) .. 891

Giulio Vignoli, Eliklim Abla Dzikunoo, Flemming Jørgensen,

Sandow Mark Yidana, Bruce Banoeng-Yakubo, and Peng Bai

A Fast and Efficient Picking Algorithm for Earthquake Early Warning Application Based on the Variance Piecewise Constant Models 903

Nicoletta D’Angelo, Giada Adelfio, Antonino D’Alessandro,

and Marcello Chiodi

The Stress Field in the Northern Apulia (Southern Italy), as Deduced from Microearthquake Focal Mechanisms: New Insight from Local Seismic Monitoring .. 914

Marilena Filippucci, Pierpaolo Pierri, Salvatore de Lorenzo,

and Andrea Talarico

Luca Piroddi and Sergio Vincenzo Calcina

Geophysical and Remote Sensing Techniques for Evaluating Historical Stratigraphy and Assessing the Conservation Status of Defensive Structures Heritage: Preliminary Results from the Military Buildings at San Filippo Bastion, Cagliari, Italy .. 944

Luca Piroddi, Sergio Vincenzo Calcina, Donatella Rita Fiorino,

Silvana Grillo, Antonio Trogu, and Giulio Vignoli

Application of Non-invasive Measurements in the Recent Studies of the Scrovegni Chapel: Results and Considerations .. 960

Rita Detiana
Towards the Definition of a Low-Cost Toolbox for Qualitative Inspection of Painted Historical Vaults by Means of Modified DSLR Cameras, Open Source Programs and Signal Processing Techniques 971

Luca Piroddi, Sergio Vincenzo Calcina, Antonio Trogu, and Giulio Vignoli

International Workshop on High Performance and Pervasive Computing (WHPPC 2020)

Support Vector Machine for Path Loss Predictions in Urban Environment . . . 995

Robert O. Abolade, Solomon O. Famakinde, Segun I. Popoola, Olasunkanmi F. Oseni, Aderemi A. Atayero, and Sanjay Misra

Author Index ... 1007
A Big Data Platform for Smart and Sustainable Cities: Environmental Monitoring Case Studies in Europe

Chiara Garau1, Paolo Nesi2, Irene Paoli2, Michela Paolucci2, and Paola Zamperlin3

1 Department of Civil and Environmental Engineering and Architecture (DICAAR), University of Cagliari, 09129 Cagliari, Italy
cgarau@unica.it
2 Department of Information Engineering with its DISIT Lab, University of Florence, 09129 Florence, Italy
{paolo.nesi,irene.paoli,michela.paolucci}@unifi.it
3 Department of Civilisations and Forms of Knowledge (CFS), University of Pisa, 50126 Pisa, Italy
paola.zamperlin@unipi.it

Abstract. One of the most challenging aspects of the actual smart city trend is to keep under control the environmental parameters with the aim of general sustainability. The impact of daily activities of humans in the city is presently very evident. The geographical and social characteristics of the cities may react and facilitate the sustainability as well as may really influence how the city may be more or less resilient to certain pollution production. After investigating the theoretical concept of Smart Sustainable City (SSC), this paper reported the work performed in supporting the aforementioned trend and analysis in three European cities (Florence, Helsinki and Cagliari) that despite having different characteristics for population and density, have some similarities, such as geomorphic aspects. In addition, two of them present a relevant port (Helsinki and Cagliari), two of them have similar urban complexity, such as traffic (Florence and Helsinki). The work presented has exploited Snap4City big data for smart city infrastructure and has been developed in the context of Snap4City, Trafair, and GHOST projects. The results have shown that critical aspects have been identified over time for pollution issues, in particular with PM10 and NOX.

Keywords: Smart Sustainable Cities · City dashboard · Snap4city · Big data · IoT · IoE · Florence · Helsinki · Cagliari

1 Introduction

Over the years, the “smart city” label has begun to no longer be considered sufficient to encompass all the possible implications related to the new idea of the city [1, 2]. On the one hand, scientific studies introduced the concept of “smart and sustainable cities” [3] so as not to lose the connotation of sustainability in the broader terminology of smart cities even when not explicitly referred to, and on the other hand, literature divided the
smart city paradigm into eras: “smart city 1.0”, “smart city 2.0” [4, 5] and, only recently, scholarships started to perceive the “smart city 3.0” [6].

The smart sustainable city that belongs to the “smart city 3.0” era is, therefore, an innovative and human-centred city that tries to achieve the fusion of two urban development strategies with a greater respect for the environment: on the one hand, the achievement of sustainability “with respect to environment, operations, functions, services, designs, and policies” [7, p. 11]; on the other hand, the pursuit of smartness with the potential of ICT in order to provide the technological infrastructures, solutions, and approaches needed for improving the quality of life, with big data analytics and context-aware computing and in light of the goals of sustainable development [8–10, p. 11–13].

As a consequence of these premises, the development of a city, or of a highly urbanized region, today more than ever, must go hand in hand with the improvement of technologies for the acquisition, management, analysis and display of information. These technologies allow real-time and constant monitoring of all urban areas in which human activities take place, by implying a smart governance of the considered context [11]. If the extended urban system is considered as a complex organic system that behaves like an articulated sentient organism, it is possible to identify some crucial hubs for its correct functioning that concern the sources (internal and external to the system), the acquisition systems, information processing and response management processes [12]. In this regard, this article reports three examples in Europe, in particular three cities at different levels of maturity of the identification and smartification process (Florence, Helsinki and Cagliari) where this process is launched through the big data platform Snap4City. To this end, the authors begin with a theoretical framework on what is meant by smart sustainable cities of the future. Subsequently, the article focuses on the data aggregation phase which includes the monitoring of environmental variables, in order to identify problems and possible operational solutions for the optimal government of the cities under study. In fact, today environmental issues appear even more of fundamental importance as they reflect wider implications not only for long-term approaches and strategies to public health, but also for a smart management and for a smart city governance, in order to better shape together the smart sustainable cities of the future.

2 The Future of Smart Sustainable Cities Considering the “Deep Ecology” Paradigm, IoT, and Big Data

Modern cities have a significant role in strategic sustainable development, in fact, according to estimates, the intense urbanization of the last few years will led about two thirds of the world’s population to live in urban areas in 2050 [13], with imaginable repercussions on social and spatial issues ranging from land use modification to the management of natural resources, waste and pollution, without neglecting the effects still not determinable on climate change. These issues are clearly reflected in the Sustainable Development Goals (SGDs) of the United Nations’ 2030 Agenda for Sustainable Development, which entails, among other things, making cities more sustainable, resilient, and safe (UN, 2015) [14].
Currently, therefore, all those involved in the monitoring and management of cities in a smart and sustainable way and considering the “smart city 3.0” era must face problems inherent in transforming them into sustainable cities and in this effort, fortunately, the growing availability of technologies, tools and data offers a high potential for solutions to many of the challenges in a direction that respects the environment and living beings. In relation to environmental data, their analysis allows to read the city to its ecological component, closely connected to the people and the different subsystems of the city [15, 16].

The intent of the paper is in particular, to focus on smart environment management through the so-called “deep ecology” which, according to Vinod Kumar [15] considers, through basic principles, the environment, not exclusively that one of “living plants and animals, or the paradigmatic thought of the word “environment”, but basically the world around us, the place in which we live” [15, p. 10]. In relation to environmental data under the “deep ecology” paradigm, their analysis allows to read the city to its ecological component, closely connected to the people and the different subsystems of the city. In addition, the data availability alone is not a sufficient condition for the provision of smart services. It is necessary to adopt an ontology-based approach, namely an approach based on the formal and explicit specification of a conceptualization, which allows the representation and semantic interoperability of geospatial data and related processes. This is because “the lack of explicit semantics inhibits the dynamic selection of those geoprocessing data, services and workflows needed for processing geospatial information and discovering knowledge in a data-rich distributed environment” [17, p. 37]. The integration of semantic information makes location-based services smart and truly capable of improving a smart city. The amount of information available today is such that the problems related to the quality and meaning of it must already be addressed in the design of an architecture to support the smart city. Namely, first of all, the reference scenarios must be well defined to analyse the specific needs of citizens and analyse their behaviour and the actions that contribute to reaching them. Within these scenarios, georeferenced information is crucial for obtaining a context-sensitive description and an analysis of emerging local practices.

Furthermore, considering the georeferred or in any case positional nature of the sensor measurements, it is important to consider the area dependence of the measurements, even if in the case of big data [18], the large size of the dataset allows to limit the problems of the area nature by treating the choices of aggregation of data at different territorial levels to check for critical issues.

The analysis of big data amplifies the interpretative capacities of cities as sentient organisms with new meanings and, since it is the prerequisite for the creation of more in-depth knowledge bases, it facilitates the adoption of targeted and smart solutions, also in relation to environmental problems, traffic, health and their interconnections [11, 12]. In this new flow, sensors act as inputs for big data applications, together with all the information of geospatial, political and social context. The combination of IoT and analytics through big data is rapidly changing the way cities themselves operate and the dynamics through which they can be monitored and managed also regarding decision-making processes in the various sectors of urban planning, in accordance with the principles of social, economic and environmental sustainability. An example is given by the optimization of energy distribution, with monitoring of consumption or
interruption peaks, or by the management of mobility, by monitoring traffic in real time or by mitigating environmental risks. In concrete terms, in a context of smart and sustainable cities, the analysis of big data involves the implementation of very sophisticated software applications and databases managed by machines with very high computing power, such as to transform raw data flows into knowledge useful for urban planning and design.

Technologies are nowadays so invasive that they permeate objects, structures, infrastructures, ecosystems and living beings, so much so that expressions such as the Internet of Things (IoT) [19] or the Internet of Everything (IoE). They are referring to a physical environment on which an Internet infrastructure support data collection device, including RFID, NFC, GPS, infrared sensors, laser scanner, etc. Taking advantage of this expansion of global connectivity, the growth in data traffic, which was already quadruple between 2011 and 2016, shows no sign of decreasing [20], thanks also to the production of sensors low cost and the enhancement of wireless communication networks and Web technologies.

It can therefore be easily understood that the IoT, in an approach oriented to constant monitoring to improve air quality, can represent a decisive component for urban development within the ICT infrastructure of sustainable smart cities, due to its great potential to promote environmental sustainability.

Empirical examples of what is described in this paragraph will be shown in the next paragraph through the description of the three case studies.

3 Empirical Examples of IoT and IoE in the Case Studies of Florence, Helsinki and Cagliari

The integration among physical (material) and digital (immaterial) entities is increasingly widespread, namely the data describing a smart and sustainable city come from different sources and providers, that usually are available under different standards and communication protocols, realized with distinct technologies of IoT Devices.

Moreover, they are related to all the variety of areas describing a city. Thus, they describe transport and traffic systems, mobility of goods and people, land use and land cover, environmental factors, resources and energy consumption, waste, home automation and building automation, etc. This scenario from one hand, has made possible the birth of a whole new class of applications and services, from the other the use of Big Data analysis is necessary to manage a so huge variety of dataset. The use of Big Data platforms, applied in such context and having a mature experimentation level, can be considered a key factor in promoting environmental sustainability.

In this regard, the authors describe three empirical case studies: Florence, Helsinki and Cagliari. In these cities the Snap4city Big Data Platform, has been applied. The Snap4City methodology starts with the work related to the analysis of the context and the study of the goals to be reached to make the city smart and sustainable, enabling Living Lab Support and co-working. This analysis is finalized to determine which are the main relevant aspects they continuously want to monitor basing and the available
resources. The next step involves the analysis of the available data coming from the different city providers that operate and collaborate with the municipalities to provide them public or private services. Then the datasets must be ingested in the Big Data Platform, according to the objectives outlined in the first phase. Only after an efficient data gathering and data aggregation activity, it is possible to proceed with data analytic processes for the production of smart services. For example, by means of computing predictions, anomaly detection, Key Performance Indicators (KPI) monitoring, heat-maps interpolation, and studying a large set of derived data: trajectories, hot Point of Interest, origin and destination matrices, etc. The final phase, no less important, involves the exploitation of the results obtained through the creation of ad hoc visualization tools, such as mobile applications for citizens and dashboards for decision makers. These highly complex tools can also work as actuators and are able to manage any type of event from the most classic maps enriched with the Points of Interest, through comparative graphs for the management of heatmaps that are updated in real time.

In the City of Florence were made the first experiments in various contexts related to many different areas of interest such as Mobility, Environment and Pollution, Industry 4.0, Energy, Social Media, Emergency Management, Healthiness.

The City of Helsinki realized an experimentation based on the Snap4City platform, in the following domains: environment, citizen awareness, dashboard, mobile app for a number of different categories of users: citizens, tourists, and city officers. The city of Cagliari has experimented the Snap4city platform mainly to take advantages and monitor the aspects connected to the fields of tourism, culture and mobility, as appears in Fig. 1, in which a search on the TPL (Local Public Transport) timetables around a point is visible.

The comparative analysis among the three cities is realized in this paper on the environmental aspects. The study of pollution levels in urban areas, is one of the most strategic topics when it is talked about a smart and sustainable city under the “smart city 3.0” era, because it is strictly connected with the health of the city, allowing long-term approaches and strategies also in managing and designing their future. In addition, cities have an interest in understanding how much pollution affects the quality of the air that citizens breath in order to properly regulate urban mobility and give to all the awareness that they are living in a city that is increasingly technological and oriented towards focusing on citizens’ health and thus quality of life. The air quality in a city is primarily related to the production of pollution coming from the vehicles running in the city [21].
The three cities, as can be seen in Table 1, are different both demographically and territorially.

Table 1. Inhabitants, surface and density of the 3 cities under study

<table>
<thead>
<tr>
<th>City</th>
<th>Inhabitants</th>
<th>Surface (km²)</th>
<th>Density (inhab./km²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Helsinki</td>
<td>648.650</td>
<td>213.8</td>
<td>3.033,91</td>
</tr>
<tr>
<td>Florence</td>
<td>378.917</td>
<td>102.41</td>
<td>3.700</td>
</tr>
<tr>
<td>Cagliari</td>
<td>154.227</td>
<td>85,01</td>
<td>1.814,22</td>
</tr>
</tbody>
</table>

4 The Big Data Platform Snap4City for the Case Studies

Each city is faced with its own specific problems, due to its geographical location, geomorphology or its history and culture that make it unique. Although digital and technology-based approaches are often considered in the literature as a universal solution. When replicating a model in different cities or geographical areas, it is necessary to take into account individual specificities and therefore develop strategies that can draw inspiration from other contexts but are as unique and specific as the city itself [22].

Demonstrating how the fabric of smart and sustainable cities is somehow interwoven with electronic fibers, sewn together with integrated real-time detection and measurement devices, communication networks and advanced information processing systems, we bring here Snap4City, as a scalable Smart aNalytic APplication builder for sentient Cities [23].

Snap4city has been created to provide many online tools and guidelines to involve all different kinds of organizations (e.g., Research Centres and Universities, small
business, large industries, public administrations and local governments) and citizens (e.g., city operators, resource operators, companies, tech providers, category Associations, corporations, research groups, advertisers, city users, community builders). Snap4city is GDPR (General Data Protection Regulation of the European Commission) compliant, it ingests and manages large set of datasets and provides a set of smart city APIs to access the data that can be publicly available or private (the Application Program Interface, APIs in this case are available only for the people having the permission on the data - e.g., using the registration to the platform, [24, 25]).

The Snap4City Big Data Architecture has been created to as a smart city infrastructure and it is actually applied in many Italian (Firenze, Cagliari, Pisa, Livorno, Prato, Lonato, etc.) and European cities (Helsinki, Antwerp, Santiago De Compostela) and their surrounding geographical area (such as in Italy the region of Tuscany, Sardinia and Lombardia but also Belgium and Finland) [11].

The Snap4City solution provides methods and tools to quickly create a wide range of smart city applications by leveraging heterogeneous data. It enables services for stakeholders through IoT/IoE, provides Big Data analytics and technologies, provides Smart Living Labs for enabling in co-working activities all the different people involved in a Sentient city (city decision-makers, researchers, stakeholders, citizens).

Moreover, it is capable to show in advanced Dashboards information, services, applications and dashboards sharing environments for differentiated users and developers, urban operators and decision makers, serving the city [26, 27].

As anticipated, the reference scenario for comparing the three cities Florence, Helsinki and Cagliari relates to the real-time analysis of the major polluting factors in the context of a Smart City and the estimation of pollution levels for the next 48 h, exploiting the potential of the Snap4City platform (Table 2). There main work phases that must be addressed to reach the final goal are: i) Data analysis; ii) Data ingestion; iii) Data analytic and development/application/comparison of predicting algorithms and related Visualization.

Phase I – Data analysis. In Table 1 the details related to the available raw data for each city. The data considered are related to pollution, weather and weather predictions and comes from different providers. All the data founded are Open Data, excluding those on pollution in Helsinki, coming from Forum Virium activities and in which we have a specific agreement in the context of Snap4City, Select4City PCP of the European Commission. All the data is ingested in a periodical modality, each data with the frequency reported in the table, excluding those related to Cagliari. The Ingestion phase in the City of Cagliari is under development. Moreover, we pose a (*) when data is provided both in a dynamic modality for every day and as a prediction.

Phase II – Data ingestion. In this phase a set of data gathering processes are created (one for each dataset), that can be IoT Applications, based on NodeRED or ETL (Extract Transform and Load) processes based on Spoon, [16, 18, 20]. The static data (sensor position, city, type of data, unit measures, frequency of update, etc.) are semantically aggregated, in compliance with the KM4City multi-domains ontology [33] and the dynamic data are automatically updated thanks to the fact that each IoT App or ETL runs basing on the frequency update of the related dataset, as reported in the above table.
<table>
<thead>
<tr>
<th>City</th>
<th>Data category</th>
<th>Provider</th>
<th>Frequency of update</th>
<th>Type of pollutants</th>
<th># of sensors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Florence</td>
<td>Pollution</td>
<td>Arpat [28] validated data (from experts)</td>
<td>daily (related to the previous day)</td>
<td>NO2, CO, H2S, C6H6, O3</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Pollution</td>
<td>Arpat instrumental data (non-validated)</td>
<td>hourly</td>
<td>NO2, CO, H2S, C6H6, O3</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Pollution</td>
<td>CNR C calibrated data</td>
<td>5 min</td>
<td>CO, CO2, NO, O3, PM10, PM2.5,</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Weather</td>
<td>CNR</td>
<td>5 min</td>
<td>Humidity, temperature</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Weather</td>
<td>OpenWeather [29] hourly and prediction (*) for next 3 days</td>
<td></td>
<td>humidity*, temperature*, pressure*, wind speed and direction*, rain, temp_max*, temp_min*, snow, clouds*, weather description (e.g. clear sky), seaLevel Pressure*, sunrise and sunset, ground level pressure*</td>
<td>2</td>
</tr>
<tr>
<td>Helsinki</td>
<td>Pollution</td>
<td>Finnish meteorological Institute - ENFUSER [30]</td>
<td>hourly</td>
<td>NO, NO2, SO2, PM10, PM2.5, O3, AQI,</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Pollution</td>
<td>Forum Virium project, giving sensors to citizens</td>
<td>5 min</td>
<td>NO, NO2, SO2, O3, PM10, PM2.5</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Pollution</td>
<td>ENFUSER For the next 24 h (prediction for every hour)</td>
<td>For the next 24 h (prediction for every hour)</td>
<td>NO2, O3, AQI [31], PM10, PM2.5</td>
<td>30 heatmaps</td>
</tr>
<tr>
<td></td>
<td>Weather</td>
<td>OpenWeather [29] hourly and prediction for next 3 days</td>
<td></td>
<td>Same as Florence</td>
<td>3</td>
</tr>
<tr>
<td>Cagliari</td>
<td>Pollution</td>
<td>SardegnaAmbiente [32] validated data (experts)</td>
<td>Daily (related to the previous day)</td>
<td>CO, NO2, SO2, O3, PM10, PM2.5, C6H6</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Pollution</td>
<td>SardegnaAmbiente instrumental data (non-validated)</td>
<td>hourly</td>
<td>CO, NO2, SO2, O3, PM10, PM2.5, C6H6</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Weather</td>
<td>OpenWeather [29] hourly and prediction for next 3 days</td>
<td></td>
<td>Same as Florence</td>
<td>8</td>
</tr>
</tbody>
</table>
Phase III – Data analytic and development/application/comparison of predicting algorithms. In order to have a complete picture of the pollution situation in a smart city, it is necessary to start from the air quality data analyzing the level of the several pollution aspects have to be assessed measuring, for example: SO2, NO, NO2, O3, CO, CO2, PM10, PM2.5, etc., but also considering the weather conditions and weather forecasts, and traffic data. This makes it possible to monitor pollution in two different levels: to have the current state but also to elaborate, thanks to the use of predictive methods, the future state of pollutant levels.

Florence:
- Algorithms to estimate heatmaps for each pollutant. The frequency in which the interpolation is estimated depends on the data frequency, thus the algorithms run every hour on PM10, PM2.5, NO2, CO, humidity, air temperature.
- Algorithms to obtain the European Air Quality Index, EAQI, based on the European Environment Agency guidelines [34]. The EAQI takes into account for air quality assessment about PM10, PM2.5, NO2, O3, and SO2 considering the worst cases among the values of those measures according to a formula. The resulting index from 1 to 5 (good, fair, moderate, poor and very poor) indicate the quality of air.

Helsinki:
- Algorithms to estimate heatmaps for each pollutant. The frequency in which the interpolation is estimated depends on the data frequency, thus the algorithms run every hour on PM10, PM2.5, NO2, AQI, humidity, air temperature.
- Algorithms to obtain the European Air Quality Index, EAQI, based on the European Environment Agency guidelines, as described for the city of Florence.
- Visualization of the ENFUSER Open Data AQI heatmaps. The Finnish Air Quality Index is a hourly index which describes the air quality today, based on hourly values and updated every hour. The index takes into account the concentrations of sulphur dioxide (SO2), nitrogen dioxide (NO2), respirable particles (PM10), fine particles (PM2.5), ozone (O3) carbon monoxide (CO), and the Total Reduced Sulphur compounds (TRS). The air quality index in use in Finland is developed and maintained by the Helsinki Region Environmental Services Authority HSY and the National Institute for Health and Welfare THL.
- Visualization of the ENFUSER Open Data heatmap: hourly previsions for the next 24 h on AQI, PM10, PM2.5 on NO2, O3, AQI, PM10, PM2.5.

Heatmaps are computed using a bilinear interpolation (Akima method, [40, 41]). Interpolated maps are delimited by external sensors and the value are estimated inside the external sensors area (triangulation). The bivariate interpolation method consists of five procedures: (1) triangulation (i.e., partitioning into a number of triangles) of the x-y plane; (2) selection of several data points that are closest to each data point (sensor) and are used for estimating the partial derivatives; (3) organization of the output with respect to triangle numbers; (4) estimation of partial derivatives at each data point; and (5) punctual interpolation at each output point. The z value of the function at point of coordinates (x, y) in a triangle is interpolated by a bivariate fifth-degree polynomial in x and y. The algorithm has been implemented as an R script, that is put in execution periodically on the Snap4City Infrastructure.
In Fig. 2, the hourly heatmaps related to the cities of Helsinki and Florence are compared. Moreover, a set of heatmap controls is available and useful to go back and forth in time as method to compare the status of pollutants and weather data not only today but also in the past (and in future in case of the ENFUSER data). While in Fig. 3, is available the comparison, which once again connects the cities of Helsinki and Florence. This model makes predictions on the next 48 h at two level (3 and 6 m) on NOx, also in this case the heatmap controls allow the user to scroll through time and display heatmaps both in past and future. It as possible to view a video showing the next 24 h. Looking at Fig. 3, the NO2 heatmaps are shown.

Fig. 2. Snap4City Dashboard comparing Helsinki and Florence: PM10 heatmaps [35].

Fig. 3. Snap4City. Prediction of NO2 presence on Helsinki and Florence.
Table 3 Comparison among Florence, Helsinki, Cagliari on Annual Means related to PM2.5, PM10, NOX, AQI/EAQI, considering that regarding Cagliari, for EAQI (*) only a qualitative evaluation is available in the Sardegna Ambiente Portal.

<table>
<thead>
<tr>
<th>Sensor name</th>
<th>Mean annual PM10</th>
<th>Mean annual PM2.5</th>
<th>Mean annual NOX</th>
<th>Mean annual EAQI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Florence Gramsci – downtown</td>
<td>27.52</td>
<td>15.59</td>
<td>97.03</td>
<td>2.43 (Moderate)</td>
</tr>
<tr>
<td>Florence Airport - periphery</td>
<td>21.07</td>
<td>21.89</td>
<td>64.59</td>
<td>2.67 (Moderate)</td>
</tr>
<tr>
<td>Helsinki station - downtown</td>
<td>19.34</td>
<td>6.83</td>
<td>21.62</td>
<td>1.64 (Fair)</td>
</tr>
<tr>
<td>Helsinki Länsisatama 4 in Jätkäsaari periphery</td>
<td>no measures</td>
<td>4.62</td>
<td>15.21</td>
<td>1.73 (Fair)</td>
</tr>
<tr>
<td>Cagliari Cenca1 - Periphery</td>
<td>30.16</td>
<td>18.68</td>
<td>28.51 (NO2)</td>
<td>Fair (*)</td>
</tr>
<tr>
<td>Cagliari Cenmo1 - downtown</td>
<td>27.63</td>
<td>11.48</td>
<td>13.44 (NO2)</td>
<td>Fair (*)</td>
</tr>
</tbody>
</table>

5 Discussions and Conclusions

Smart and sustainable cities of the future represent a techno-urban innovation that triggered transformative processes that are developed due to the growing infiltration of sensors and of the enhancement of connectivity in urban systems with the consequent production of data, services, functions and projects [36, 37].

As with any transformation process in sustainable smart cities, it is necessary to establish road maps that take into account virtuous experiences and are able to make continuous improvements in urban contexts where they operate, always starting from the verification of the starting conditions, that is, having awareness the degree of maturity and the city’s willingness to change.

The integration of IoT and big data will undoubtedly have significant short- and long-term effects in the creation of increasingly smart sustainable cities, even if open challenges for the analysis and management of big data must not be overlooked,
including all the related implications, to ownership and privacy, to the integration of databases between different urban domains, data sharing, in addition to the usual long-standing questions regarding uncertainty, incompleteness, accuracy and quality of data.

This paper reported the work performed in supporting this trend and analysis in three cities in Europe, which are from certain point of views are similar: Florence, Helsinki and Cagliari, for geomorphic aspects and for population. Two of them present a relevant port, two of them have similar population and traffic, etc. The results have shown that critical aspects have been identified for PM10 and NOX over time.

The Snap4city architecture, quickly described in this paper, through experimentation conducted in different urban areas, highlights a paradigm shift, since it does not adopt an approach simply driven by technology but more specifically driven by data. Big data, open data, sensors, IoT, IoE for monitoring, controlling and managing urban developments, resources, urban infrastructure, energy consumption, traffic congestion, waste, pollution, risks and people, are the tools for governance and urban planning, for which the expected changes are a consequence of a decision-making process based on the data [38, 39]. The work presented has exploited Snap4City bigdata for smart city infrastructure and has been developed in the context of Snap4City, TRAFAIR, and GHOST projects.

Acknowledgments. This study was also supported by the MIUR (Ministry of Education, Universities and Research [Italy]) through a project entitled WEAKI TRANSIT: WEAK-demand areas Innovative TRANsport Shared services for Italian Towns (Project code: 20174ARRHT; CUP Code: F74I19001290001), financed with the PRIN 2017 (Research Projects of National Relevance) programme. We authorize the MIUR to reproduce and distribute reprints for Governmental purposes, notwithstanding any copyright notations thereon. Any opinions, findings and conclusions or recommendations expressed in this material are those of the authors, and do not necessarily reflect the views of the MIUR. In addition, the authors would like to thank the European Union’s Horizon 2020 research and innovation program for funding the “Select4Cities” PCP project (within which the Snap4City framework has been supported) under grant agreement No 688196, and also all the companies and partners involved. Snap4City and Km4City are open technologies and research of DISIT Lab https://www.snap4city.org. The authors would like also to thank the TRAFAIR CEF project of the EC with grant AGREEMENT No INEA/CEF/ICT/A2017/1566782 also all the companies and partners involved.

References and Notes

1. This paper is the result of the joint work of the authors. In particular, ‘Abstract’ was written jointly by the authors. Chiara Garau wrote the ‘Introduction’. Paola Zamperlin wrote the ‘The Future of Smart Sustainable Cities Considering the “Deep Ecology” Paradigm, IoT, and Big data’. Irene Paoli wrote ‘The Big Data Platform Snap4City for the Case Studies’. Michela Paolucci wrote ‘Empirical Examples of IoT and IoE in the Case studies of Florence, Helsinki and Cagliari’. Paolo Nesi wrote ‘Conclusions’

18. The term big data means the availability and proliferation of large quantities of data characterized by heterogeneity, complexity, temporality, modifiability and their use in disparate application domains. By convention and for brevity it is usual to refer to the well-known 5 V, that is velocity, volume, value, variety, and veracity. (to which later validity and volatility were added). Due to these characteristics, the computational and analytical capabilities of standard software applications and conventional database infrastructures are no longer sufficient for the processing and management of big data. The data acquired by sensors are analyzed through data-mining and machine learning techniques in order to build descriptive and predictive models to support decisions

19. The IoT actually constitutes an increasingly sophisticated network of sensors (i.e. electronic devices that react to certain physical inputs and return a digital signal) that affects almost every type of everyday object: roads, railways, bridges, roads, buildings, water systems, electricity networks, vehicles, appliances, goods, machines, animals, plants, soil and air, including people themselves. In essence, the connectivity achieved by the IoT involves living beings, objects and places and is destined to grow
23. https://www.snap4city.org
31. Air Quality Index - AQI
33. KM4City multi-ontology. https://www.km4city.org/