

e.INS SPOKE 9

e.INS – Ecosystem of Innovation for Next Generation Sardinia - ECS00000038

Piano Nazionale di Ripresa e Resilienza
Missione 4 – Componente 2 – Dalla Ricerca all'Impresa –
Linea di investimento 1.5 – Creazione e Rafforzamento di
«Ecosistemi dell'Innovazione per la Sostenibilità», costruzione
di «Leader Territoriali di R&S».
Codice CUP: F53C22000430001

PROTEZIONE E VALORIZZAZIONE DELL'AMBIENTE

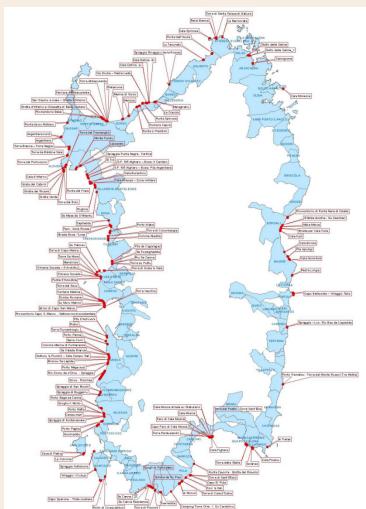
Implementare misure di protezione specifiche e soluzioni innovative per preservare l'ambiente e i servizi ecosistemici derivati, creando così un valore economico aggiunto per le comunità

WP 4

Protecting coastal areas and groundwater reservoirs from natural and anthropic impacts

AZIONI SISTEMICHE IN AREE COSTIERE

STEFANIA DA PELO
Dipartimento di Scienze Chimiche e Geologiche



- 4.1 Indicatori geologici della stabilità delle coste alte
- 4.2 Vulnerabilità e resilienza degli ecosistemi costieri
- 4.3 Progettazione di sistemi di gestione degli acquiferi costieri
- 4.4 Bonifica delle acque sotterranee multicontaminate
- 4.5 Trasferimento di conoscenza e supporto alle decisioni

Mappa regionale dei tratti in costa rocciosa ad alta criticità

tratti artificiali
km 130; 6%

spiagge
km 582; 26%

costa rocciosa
km 1.529; 68%

Costa della Sardegna 2.241 km:

- costa rocciosa **1.529 km** (68%) di cui **127** km in falesia,
- costa sabbiosa **582 km** (26%)
- costa artificiale **130 km** (6%), con 33 km di opere portuali e 99 km di opere di difesa.

(Dati P.A.C., Regione Sardegna)

SPOKE 9
PROTEZIONE E VALORIZZAZIONE
DELL'AMBIENTE


4.1 - STUDIO DELLE DINAMICHE EVOLUTIVE DEGLI AMBIENTI COSTIERI TERRESTRI E MARINI BASATO SU PARAMETRI GEOLOGICI E RELATIVI SISTEMI DI MONITORAGGIO

FUNEDDA A., COCCO F., MELONI M. A. Dipartimento di Scienze Chimiche e Geologiche

OBIETTIVO:

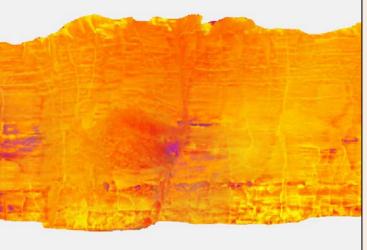
Valutare l'influenza delle caratteristiche geologiche sulla propensione e sulla cinematica dei fenomeni franosi in ambito costiero

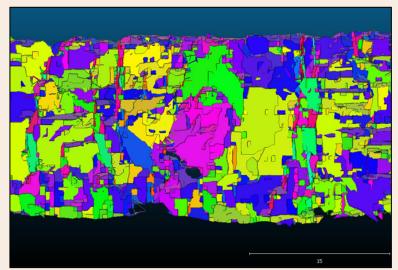
Materiali e Metodi

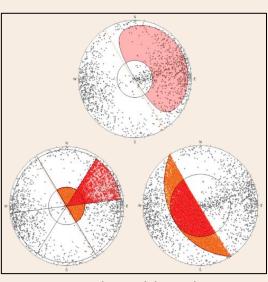
DJI Matrice 350 con L2

DJI Mavic 3T

GPS RTK

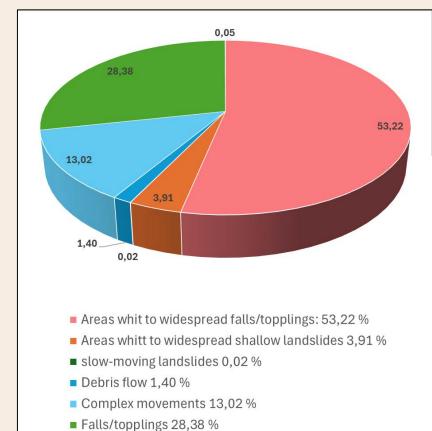

Dense Cloud


Digital Surface Model (DSM).

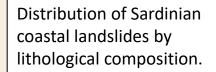

3D model (Tiled Model).

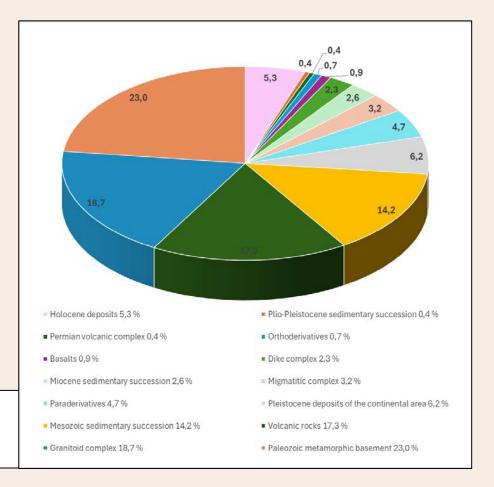
Thermal imaging of a coastal cliff and potential fracture zones.

Plugin application for automatic discontinuity mapping on a coastal cliff.


Slope stability analysis.

e.INS – Ecosystem of Innovation for Next Generation Sardinia - ECS00000038 SPOKE 9
PROTEZIONE E VALORIZZAZIONE
DELL'AMBIENTE





Distribution of different types of coastal landslides, with widespread falls/topplings being the most dominant process (53.22%).

■ Rotational-translational slides 0,05 %

4.2 - VULNERABILITÀ E RESILIENZA DEGLI ECOSISTEMI COSTIERI DELLA SARDEGNA AI CAMBIAMENTI CLIMATICI: UN APPROCCIO BASATO SUL RISCHIO

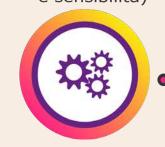
BACCHETTA G., MARIGNANI M., BAZZATO E. Dipartimento di Scienze della Vita e dell'Ambiente

PREPARAZIONE DELLA

clima che insistono sui

e definizione dei criteri per

biotopi costieri


VALUTAZIONE DEL RISCHIO

Identificazione dei rischi legati al

determinare le condizioni di gravità

SVILUPPO DELLA CATENA DI IMPATTO

Selezione di una serie di indicatori per quantificare i fattori che determinano le componenti di vulnerabilità (capacità e sensibilità)

ACQUISIZIONE DATI E ANALISI

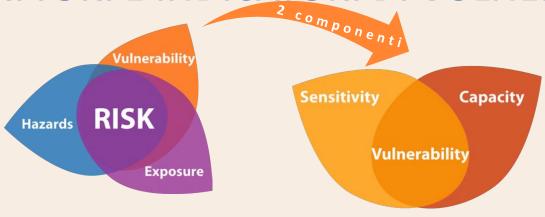
Acquisizione dati spaziali e calcolo indicatori (normalizzazione, ponderazione e aggregazione indicatori)

VALUTAZIONE

Aggregazione
delle componenti di
vulnerabilità e
riclassificazione valori
in una scala da
1 (ottimo) a 5 (critico)

IDENTIFICAZIONE MISURE DI ADATTAMENTO

Nature-based solution che riducono la vulnerabilità a ciascun fattore migliorando la resilienza al rischio



Materiali e Metodi FATTORI E INDICATORI DI VULNERABILITÀ

SENSIBILITÀ

CAPACITÀ

3 fattori e indicatori di capacità

- Assenza di aree marine protette
- Assenza di aree protette Natura 2000
- Assenza di parchi nazionali e regionali

6 fattori (attributi fisici ed ecologici) e 12 indicatori di sensibilità

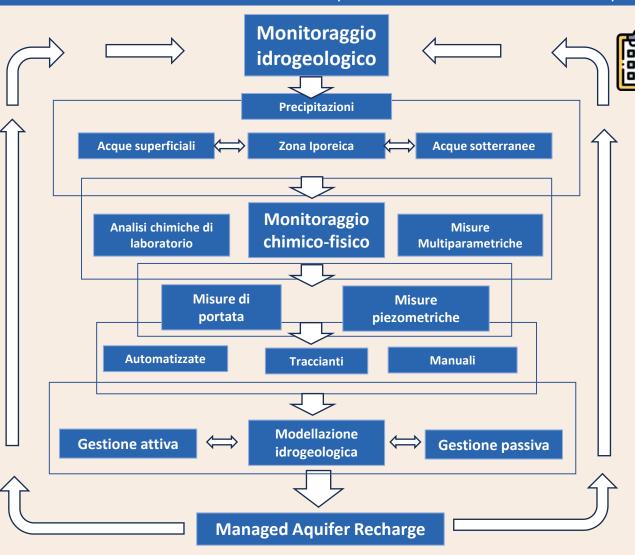
- Uso del suolo sfavorevole (proporzione media di aree urbane e agricole)
- Uso del suolo favorevole (proporzione media di aree naturali e semi-naturali, corpi idrici e zone umide)
- Frammentazione sfavorevole (dimensione media delle patch; indice di forma medio; bordo medio delle patch)
- Bassa connettività (distanza media del vicino più prossimo tra i biotopi Corine)
- Elevata pressione di piante aliene/invasive (densità media di specie aliene/invasive e la distanza media di ciascun biotopo dai punti di presenza di specie aliene/invasive)
- Elevata abbondanza di habitat di Direttiva Habitat UE (proporzione media di habitat UE in ciascun biotopo Corine)

BIOTOPI CON CAPACITÀ CRITICA

Carenti capacità delle istituzioni di rispondere agli impatti attuali e futuri

BIOTOPI CON SENSIBILITÀ O VULNERABILITÀ CRITICA

Sono state identificate 21 soluzioni di adattamento volte a mitigare le condizioni di vulnerabilità

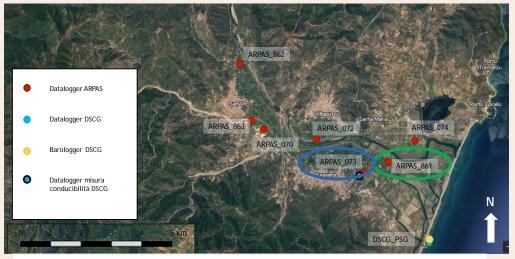

Vegetazione ad alofite con dominanza di

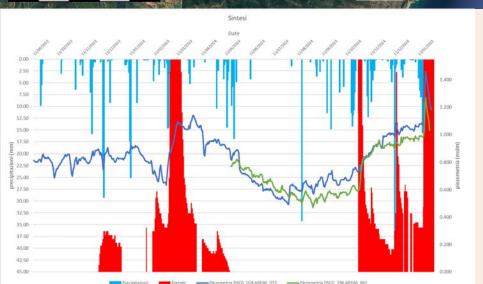
Chenopodiacee succulente annuali (15.1)

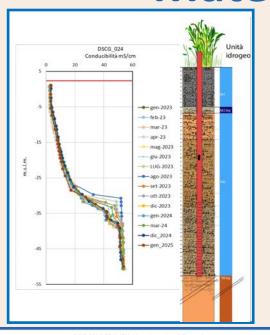
4.3 - PROGETTAZIONE DI SISTEMI DI GESTIONE DEGLI ACQUIFERI COSTIERI SOGGETTI AD INTRUSIONE SALINA

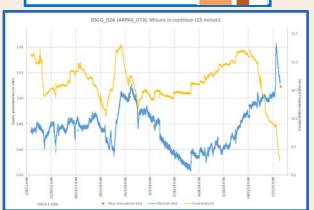
DA PELO S., PISCEDDA F.A., MEDAS D., MUSU E. Dipartimento di Scienze Chimiche e Geologiche

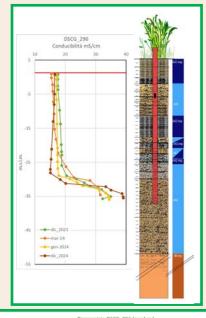
OBIETTIVO:

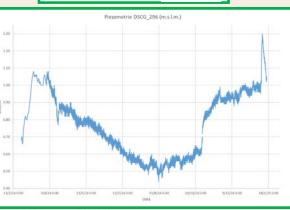

Costruire un sistema di supporto alle decisioni in acquiferi costieri interessati da intrusione salina



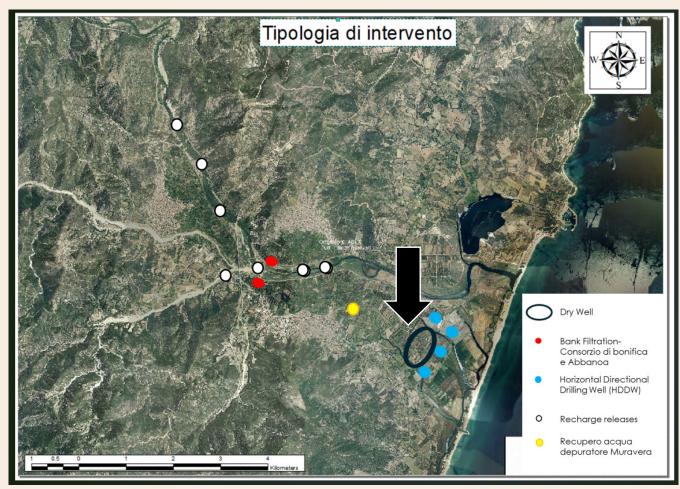


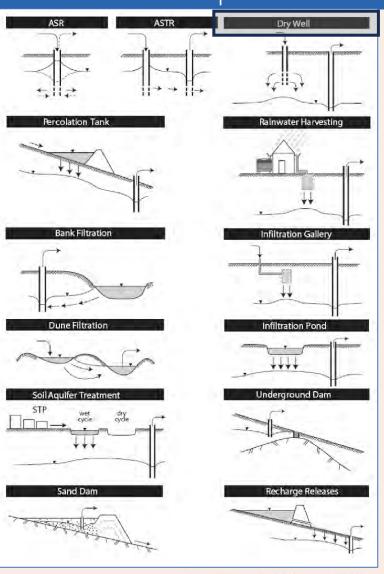



Materiali e Metodi



SPOKE 9

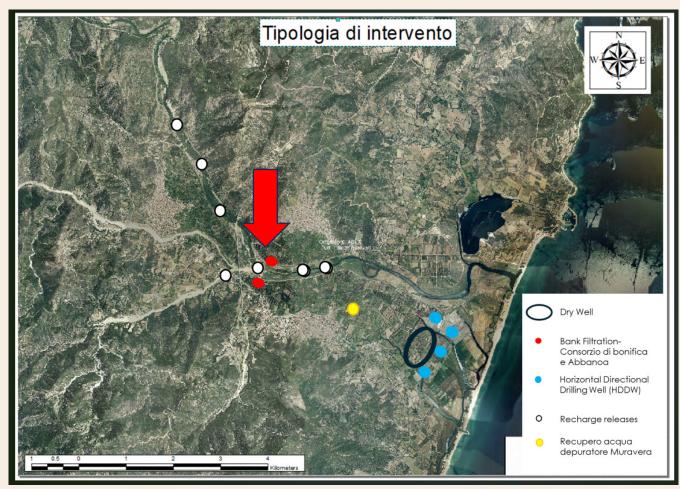

PROTEZIONE E VALORIZZAZIONE DELL'AMBIENTE

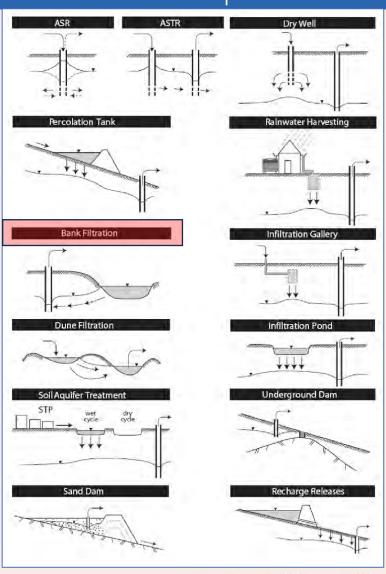


e.INS – Ecosystem of Innovation for Next Generation Sardinia - ECS00000038

SPOKE 9 PROTEZIONE E VALORIZZAZIONE DELL'AMBIENTE

Piano Nazionale di Ripresa e Resilienza


Missione 4 – Componente 2 – Dalla Ricerca all'Impresa – Linea di investimento 1.5 – Creazione e
Rafforzamento di «Ecosistemi dell'Innovazione per la Sostenibilità», costruzione di «Leader
Territoriali di R&S». Codice CUP: F53C22000430001

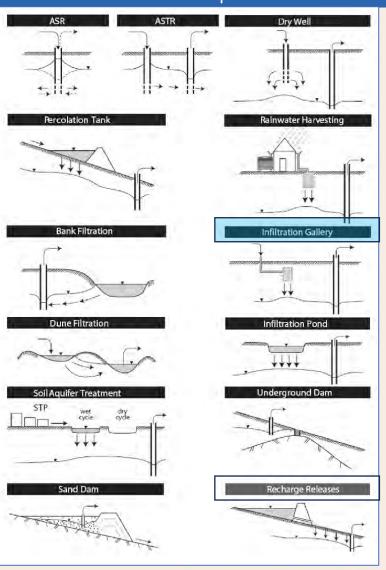


e.INS – Ecosystem of Innovation for Next Generation Sardinia - ECS00000038

SPOKE 9 PROTEZIONE E VALORIZZAZIONE DELL'AMBIENTE

Piano Nazionale di Ripresa e Resilienza

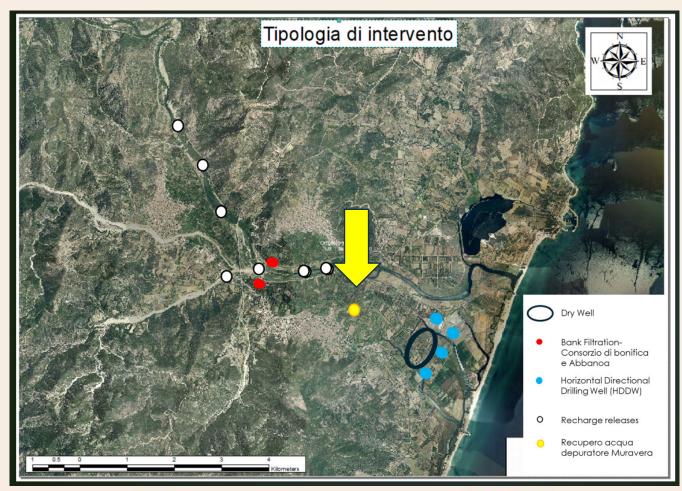

Missione 4 – Componente 2 – Dalla Ricerca all'Impresa – Linea di investimento 1.5 – Creazione e
Rafforzamento di «Ecosistemi dell'Innovazione per la Sostenibilità», costruzione di «Leader
Territoriali di R&S». Codice CUP: F53C22000430001

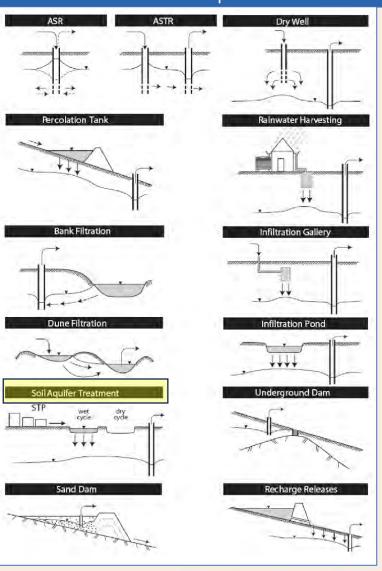


e.INS – Ecosystem of Innovation for Next Generation Sardinia - ECS00000038

SPOKE 9
PROTEZIONE E VALORIZZAZIONE
DELL'AMBIENTE

Piano Nazionale di Ripresa e Resilienza

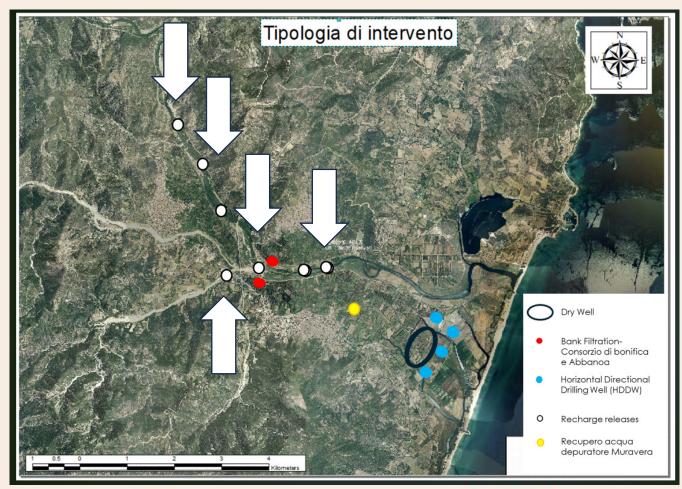

Missione 4 – Componente 2 – Dalla Ricerca all'Impresa – Linea di investimento 1.5 – Creazione e
Rafforzamento di «Ecosistemi dell'Innovazione per la Sostenibilità», costruzione di «Leader
Territoriali di R&S». Codice CUP: F53C22000430001

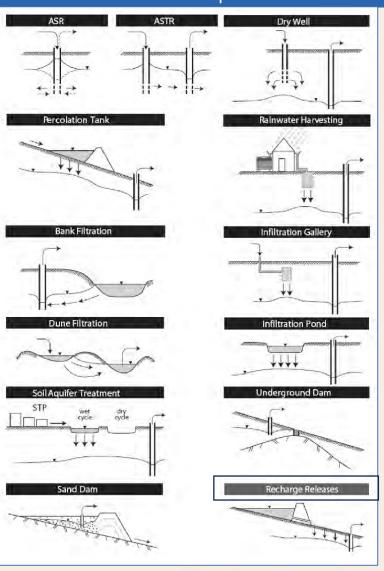


e.INS – Ecosystem of Innovation for Next Generation Sardinia - ECS00000038

SPOKE 9
PROTEZIONE E VALORIZZAZIONE
DELL'AMBIENTE

Piano Nazionale di Ripresa e Resilienza


Missione 4 – Componente 2 – Dalla Ricerca all'Impresa – Linea di investimento 1.5 – Creazione e
Rafforzamento di «Ecosistemi dell'Innovazione per la Sostenibilità», costruzione di «Leader
Territoriali di R&S». Codice CUP: F53C22000430001



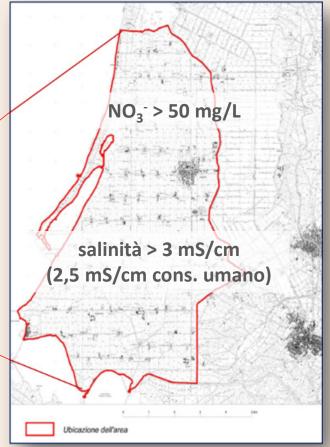
e.INS – Ecosystem of Innovation for Next Generation Sardinia - ECS00000038

SPOKE 9
PROTEZIONE E VALORIZZAZIONE
DELL'AMBIENTE

Piano Nazionale di Ripresa e Resilienza

Missione 4 – Componente 2 – Dalla Ricerca all'Impresa – Linea di investimento 1.5 – Creazione e
Rafforzamento di «Ecosistemi dell'Innovazione per la Sostenibilità», costruzione di «Leader
Territoriali di R&S». Codice CUP: F53C22000430001

Zona Vulnerabile da Nitrati (ZVN)


5.500 ha del territorio del Comune di Arborea (OR)

Prevalente vocazione agricola e zootecnica

e.INS - Ecosystem of Innovation for

Next Generation Sardinia - ECS00000038

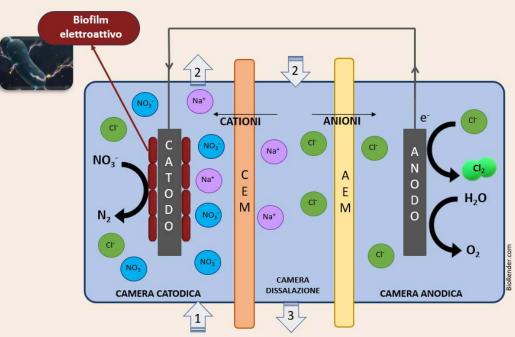
SPOKE 9

PROTEZIONE E VALORIZZAZIONE DELL'AMBIENTE

4.4 - NUOVI SISTEMI BIO-ELETTROCHIMICI PER LA BONIFICA DELLE ACQUE SOTTERRANEE MULTI-CONTAMINATE

CARUCCI A., MILIA S.

Dipartimento di Ingegneria Civile, Ambientale e Architettura

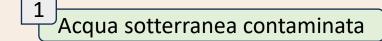

OBIETTIVO:

- Sviluppo di processi bio-elettrochimici avanzati
 - ► Rimozione simultanea di nitrati e salinità
 - ➤ Contestuale recupero di sostanze a valore aggiunto dalle acque (economia circolare)
- Ottimizzazione e validazione dei processi in condizioni reali

- b. Applicazione del processo in condizioni controllate (simulazione acqua sotterranea)
 - b.1 rimozione dei nitrati con biofilm elettroattivo (biocatodo)
 - b.2 dissalazione dell'acqua
 - b.3 recupero di cloro all'anodo (economia circolare)

c. Validazione del processo (acqua sotterranea della ZVN di Arborea)

Nitrati post-trattamento: < 2 mg/L ■


Consumi rilevati: 1,2-1,5 kWh/m³_{acqua trattata}

Cloro prodotto: fino a 20 mg/L/giorno

I **sistemi bio-elettrochimici** sono una promettente alternativa ai sistemi convenzionali di risanamento

Acqua sotterranea «denitrificata»

Acqua sotterranea dissalata

e.INS - Ecosystem of Innovation for Next Generation Sardinia - ECS00000038 **DELL'AMBIENTE**

4.5 - TRASFERIMENTO DEI RISULTATI AI DECISORI POLITICI
ALLO SCOPO DI GUIDARE LE SCELTE STRATEGICHE SUL
LUNGO PERIODO

SISTU G., MARIGNANI M.

Dipartimento di Scienze politiche e sociali

Dipartimento di Scienze della Vita e dell'Ambiente

OBIETTIVO

- Avviare le attività di dialogo con le aziende
- Sviluppare un dialogo costruttivo e di vicendevole interesse fra i gruppi di ricerca delle due università e gli attori istituzionali della RAS.

- > Avere feedback e commenti scritti sulle attività da parte dei partecipanti RAS così da includerli nel prossimo progress report
- Condividere la futura pubblicazione dei risultati delle ricerche e l'attenzione specifica riservata agli attori istituzionali
- > Pianificare un prossimo incontro a fine progetto (inizio dicembre 2025);
- Condividere l'ipotesi della preparazione di brevi corsi online registrati dai nostri docenti da distribuire nelle scuole all'inizio del prossimo anno scolastico sulle tematiche dello Spoke
- ➢ Pianificare un evento finale aperto alle scuole sulle attività e tematiche dello Spoke − "Giornata delle scuole sulla protezione e valorizzazione dell'ambiente" (ottobre 2025);
- Individuare le modalità più efficaci, in collaborazione con la RAS, per trasferire alle amministrazioni locali le opportunità per i diversi territori dell'isola che offrono i risultati dello Spoke 9

WP 4

Protecting coastal areas and groundwater reservoirs from natural and anthropic impacts

GRAZIE PER L'ATTENZIONE

I RESPONSABILI DEI TASK SONO A VOSTRA DISPOSIZIONE PER GLI APPROFONDIMENTI

