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Abstract— Modern distribution networks are characterized by
higher distortion and faster variability of voltages and cur-
rents. Accurate synchrophasor, frequency, and rate-of-change-of-
frequency measurements thus ask for new techniques trying to
reduce latency while limiting the impact of spurious components.
In this respect, Taylor–Fourier multifrequency approach is a good
candidate for phasor measurement units intended for distribution
system applications. In this present article, we propose an
enhanced version of this approach based on the joint application
of window functions and iterative support refinement by means
of the phasor first-order derivative. The performance of the algo-
rithm is thoroughly characterized through extensive numerical
simulation of nonstandard test conditions that reproduce the
challenges of real-world scenarios, with fundamental dynamics
superimposed on interfering tones. The reported results confirm
the enhanced spectral support recovery, resulting in a remarkable
improvement of estimation accuracy.

Index Terms— Coherence, compressed sensing, phasor
measurement units (PMUs), power system harmonics, rate-of-
change-of-frequency (ROCOF), spectral support, Taylor–Fourier
multifrequency, window function.

I. INTRODUCTION

IN RECENT years, distribution networks are experiencing a
significant transformation; the traditional generation para-

digm based on synchronous generators is accompanied by the
integration of renewable energy sources (RESs). The inter-
connection of such resources relies on dedicated converters,
whose power electronic circuitry switches at high frequency
and produces nonnegligible harmonic and interharmonic dis-
turbances [1]. These components may not be canceled by
the analog front end of many instruments and thus cause
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significant errors in the measurement results. Moreover, this
novel paradigm reduces the overall rotating inertia and makes
the network more vulnerable against transient events and fast
dynamics, also at the fundamental frequency [2].

In order to address this challenging scenario, many mon-
itoring and control applications have been set up to update
periodically the network state and identify possible anomalies
or faults [3]. In a near future, these applications might rely
also on the measurements of the so-called phasor measure-
ment units (PMUs), i.e., instruments capable of estimating
the synchrophasor, frequency, and rate-of-change-of-frequency
(ROCOF) associated with the fundamental component at a
reporting rate in the order of tens of frames-per-second
(fps) [4]. In this regard, the recent IEC Std 60255-118-1 (IEC
Std from here on) defines two performance classes, P and
M, and the corresponding compliance limits in terms of total
vector error (TVE), frequency error (FE), and ROCOF error
(RFE) [5]. It is important to underline that the IEC Std refers
to a transmission network scenario, where the penetration of
RES and interface converters is negligible. Therefore, the IEC
Std test conditions reflect a nearly stable operation with limited
distortion due to harmonic or out-of-band (OoB) interference.
Indeed, the rejection of spurious components is verified only in
the presence of single harmonic or interharmonic tones, under
steady-state conditions with nominal frequency and distortion
levels not exceeding 10%.

In order to guarantee the reliability of such measurements
also at the distribution level, it is necessary to test the PMUs
and their estimation algorithms in more realistic scenarios
[6]–[9]. In this sense, off-nominal and dynamic test condi-
tions should be combined with the simultaneous presence of
harmonic and interharmonic components [10].

To this end, the recent literature has investigated sev-
eral different algorithmic approaches. Among them, the
Taylor–Fourier filters (TFFs) prove to be a promising solution,
as they allow for computing not only the synchrophasor
but also its Taylor series expansion around the measurement
instant [11], [12]. By including the high-order derivatives in
the signal model, it is possible to account for time variations
of the parameters of the fundamental component. More pre-
cisely, this allows for defining the instantaneous fundamen-
tal frequency and ROCOF as functions of the phase-angle
first- and second-order derivatives. Such formulation has
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a twofold advantage: enhance the estimation accuracy in
dynamic conditions and minimize the reporting latency [13].
Unfortunately, the accuracy obtained with TFFs drastically
degrades in the presence of interfering tones in the neighbor-
hood of the fundamental component. For this reason, the com-
pressive sensing Taylor–Fourier Multifrequency (CS-TFM)
model applies a two-step procedure: first, a CS-based routine
identifies the signal support (i.e., the set of most significant
spectral components); then, a TFM model is defined con-
sidering the support. If properly identified, the interferences
are minimized and the estimation accuracy is compliant with
both P and M class requirements, even in the presence of
interharmonic components at the boundaries of the PMU
passband [14], [15].

The identification of the signal support is performed in the
discrete Fourier transform domain by means of a dictionary,
which in [16] consists of a set of Dirichlet kernels. This
dictionary accounts for the spectral leakage contributions of
a rectangular window: narrow and selective main lobe at the
cost of high and slowly decaying sidelobes. This latter aspect
tends to increase the interference coming from the negative
frequency image components, especially if a reduced latency
is envisioned [17].

The performance degradation is particularly noticeable in
the RFE, as the second-order derivative term is particularly
sensitive to spurious injections [18]. In the recent literature,
several approaches have addressed the support recovery issue:
a Kalman filter to exploit the regularity of consecutive esti-
mates [19] or a peak detection routine for preliminary defini-
tion of the support cardinality [20]. In real-world conditions,
though, these approaches still require a window length of at
least five nominal cycles [21].

This article is the extension of [22], where the adoption
of weighting to minimize leakage between spectral com-
ponents was first proposed (compressive sensing weighted
Taylor–Fourier multifrequency (CS-WTFM)). This idea cor-
responds to modifying the support identification dictionary in
order to find the best tradeoff between precise location of spec-
tral peaks and optimization of sidelobes decay. In particular,
the Chebyshev window [23] proves to be a promising solution
as it guarantees a reduction of the minimum window length
and a remarkable enhancement of the estimation accuracy
even in off-standard conditions. Based on these results, this
article proposes a further improvement: the identification of the
support is iteratively corrected by considering the phase-angle
first derivative of the identified components (compressive
sensing enhanced weighted Taylor–Fourier multifrequency
(CS-EWTFM)). In this way, it is possible to check whether
the selected set of frequencies is consistent with the frequency
estimate of each component. The performance enhancement is
confirmed by an extensive characterization in off-standard con-
ditions. In particular, it is noticed that the proposed approach
is more robust in the presence of fast dynamics and several
interfering components.

This article is organized as follows. In Section II, we sum-
marize the TFM theoretical foundations. Section III introduces
CS-WTFM and the new CS-EWTFM and discusses their
impact on support recovery. In Section IV, we characterize

the algorithms performance in highly distorted test conditions.
Finally, Section V provides some closing remarks and outlines
future research.

II. COMPRESSIVE SENSING TAYLOR–FOURIER

MULTIFREQUENCY APPROACH

A. Taylor–Fourier Multifrequency Model

Let us consider an electrical signal x(t) acquired with
sampling interval Ts . The CS-TFM (TFM in the following)
approach relies on the following model for a vector x made
of an odd number Nw of samples of the aforementioned signal,
centered on the time instant tr :

x(tr ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x

(
tr + Nw − 1

2
Ts

)
...

x(tr )
...

x

(
tr − Nw − 1

2
Ts

)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= B̄p̄(tr ) + r

= [
�̄1A1 · · · �̄QAQ �̄H

1 A1 · · · �̄H
QAQ

]
p̄(tr ) + r (1)

where H is the Hermitian operator and overbars denote
complex-valued quantities. Vector r expresses the model error
at the different sampling instants, while p̄ includes all the
unknown parameters of the model, and it can be written as

p̄ =
[

X̄ (0)
1 · · · X̄ (K1)

1 · · · X̄ (0)
Q · · · X̄(K Q)

Q X (0)
1 · · · X(K Q)

Q

]
(2)

where underbar indicates the conjugate of a complex number.
Furthermore, X̄ (k)

l is the kth derivative of the harmonic or inter-
harmonic phasor corresponding to the lth component having
angular frequency ωl = 2π fl ; Q components are included in
the model, each one with derivatives up to the order Kl . Their
negative frequency images are always present since x(t) is
assumed to be real-valued. All the above quantities are referred
to the same time instant tr , which will be often omitted for a
lighter notation. In order to fully define the model in (1), it is
necessary to introduce

�̄l = �̄(ωl) =
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which is the phase-rotation matrix and
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According to (1), (3), and (4), the vector of the samples
around the measurement instant is approximated through a
linear combination between the columns of B̄. The generic
expression of the column in the first half of the matrix,
corresponding to the kth order term of the lth component,
is given by

cl,k[n] = (nTs)
k

2k! e jωl(tr +nTs ) (5)

with n = − Nw−1
2 , . . . , Nw−1

2 . Since x(t) is real-valued, for each
column vector defined by (5), the second half of B̄ always
includes its complex conjugate.

The target is estimating the parameters of the signal
model (1), namely, the synchrophasor derivatives that are
the entries of p̄. A straightforward yet effective approach is
minimizing the mean square error of the mismatch between
samples and model output, and therefore,

ˆ̄p(tr ) = arg min
p̄

∥∥B̄p̄ − x(tr )
∥∥ (6)

and symbol ˆ indicates, from here on, estimated quantities.
Assuming full column rank, the solution is provided due to

the Moore–Penrose inverse B̄†, thus,

ˆ̄p(tr ) = B̄†x(tr ) = H̄x(tr ) (7)

where H̄ = (B̄HB̄)−1B̄H is a bank of complex-valued FIR
filters. In particular, the mth row H̄m,∗ contains the filter
coefficients that permit estimating the mth element of ˆ̄p, which
is the corresponding synchrophasor derivative. Considering the
parameters vector defined in (2), assuming that the first com-
ponent included in the model is the fundamental (i.e., X̄ (k)

1 is
the kth derivative of the fundamental synchrophasor) and
assuming that K1 ≥ 2, we are mainly interested in estimating
the entries m = 1, 2, 3, i.e, the fundamental component
synchrophasor (X̄ (0)

1 ) and its first- and second-order derivatives
(X̄ (1)

1 and X̄ (2)
1 , respectively), which can be employed to

obtain frequency and ROCOF estimates ( f̂1 and ̂ROCOF,
respectively) [11].

B. Compressive Sensing Solution

Equation (1) defines the class of TFM models: x is decom-
posed in the linear combination between the columns of B̄,
hence into a set of slowly modulated frequency components.
For best performance, it should include the most relevant ones
for the estimation process among those present in the observed
segment of the signal x(t). Therefore, it should not be defined
once and for all, but it might change in every measurement
instant, according to the specific operating conditions. Let us
suppose that it consists of no more than Qmax components.

As described in [14], its spectral support S can be built
using a predetermined grid of possible angular frequency
values with a given step δω (called super-resolution if <

2π
Nw Ts

), while finding the most appropriate candidates through
an iterative process, being i the generic iteration index. The
TFM approach searches a sparse support made of components
belonging to the previously introduced grid, which means

looking for the set

S =
{

ĥi , i ∈ {1, . . . , NS }, ĥi = arg max
h∈�i

∣∣d̄H
h ri−1

∣∣} (8)

where NS is the cardinality of S and �i ⊆ � = {0, 1, . . . , NH }
is the set of candidate indexes viable for being added to the
support during the i th iteration. � is the set of the indexes of
the components belonging to the grid, corresponding to the
frequency values δω. d̄h is the hth column of the dictionary
matrix D̄, i.e., the generic atom of the dictionary, and it corre-
sponds to the discrete complex exponential with angular speed
hδω, namely, to cl,0 (with l the corresponding component
index) when selected in S. Furthermore,

ri = x − B̄i
ˆ̄pi (9)

represents the residual after the i th step, where B̄i and ˆ̄pi are
the matrix defining the model identified at the i th step and
the corresponding estimated parameters vector, respectively.1

Indeed, at the i th iteration, the support found in the previous
iteration Si−1 is expanded into Si by choosing a new compo-
nent from the frequency grid, specifically that resulting in the
largest projection on ri−1, since it is somewhat expected that
it will produce the largest decrease of the residual once it has
been included into the model. The model (1) is then adjusted
according to the new support Si , thus defining an augmented
model matrix B̄i that now includes the new component, its
negative frequency image, and their derivatives. Finally, the
estimation problem (6) is solved to find ˆ̄pi and the new
residual ri is computed from (9). The process stops when
the cardinality of Si reaches Qmax or when the energy of the
residual is below a threshold θnoise, which can be defined con-
sidering the minimum detection level for spectral components
or the expected background noise level.

III. IMPROVED SUPPORT RECOVERY: THE

CS-EWTFM APPROACH

A. Weighting and Dictionary Coherence

It is worth highlighting that there is no guarantee that (8)
provides the optimal identification of the spectral lines that are
actually present in the observed signal according to the super-
resolved grid, particularly in the presence of dynamic condi-
tions (that enlarge the component bandwidths) or components
having small frequency separation. From a formal point of
view, the similarity between the atoms of a given dictionary D̄
(hence the capability to distinguish between them) is quantified
by its coherence [24]

μ = max
h,k �=h

μh,k (10)

where h and k span all the possible combinations among
noncoincident column indexes, while

μh,k =
∣∣d̄H

h d̄k

∣∣∥∥d̄h

∥∥ ∥∥d̄k

∥∥ (11)

is the inter-atom coherence, which can be interpreted as a
measure of similarity between a pair of dictionary columns.

1For i = 1, in (8), it is assumed ri−1 = r0 = x.
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Reminding the expression of d̄h , (11) can be rewritten as the
magnitude of a Dirichlet kernel

μh,k =
∣∣∣∣∣ sin

(
π� fh,k NwTs

)
Nw sin

(
π� fh,k Ts

) ∣∣∣∣∣ (12)

where

� fh,k = (h − k)
δω

2π
(13)

represents the difference between the frequencies of the atoms
indexed by h and k. According to μ, it is possible to define
a priori the uncertainty of the support recovery stage as a
function of the desired sparsity level [25].

By definition, μ is bounded in the range [0, 1], where 0 and
1 correspond, respectively, to a dictionary consisting of mutu-
ally orthogonal atoms or to the presence of repeated vectors,
differing just by a scale factor. From (12) and (13), μ strongly
depends on the selected value of δω. In our case, TFM relies
on a super-resolved frequency grid, which implies that μ < 1.
On the one hand, a finer frequency resolution potentially
enables a better match between signal and model, which
translates into higher performance and disturbance rejection.
On the other hand, coherence degrades as δω is reduced, and
thus, there is higher chance to select the wrong signal support.
Therefore, selecting the frequency grid comes out as the result
of a tradeoff between these opposite requirements.

In order to improve accuracy, we want to investigate
whether, for the same grid step δω, it is possible to transform
the dictionary in order to decrease the coherence between the
most critical atoms. In this respect, we can consider using
weighting windows, widely employed in frequency-domain
analysis [26], [27]. When the target is extracting a spectral
component, we could dramatically reduce the spectral inter-
ference with respect to the others present in the signal, due to
the lower sidelobes in the frequency-domain content of the
window. Therefore, we want to scout if properly applying
weighting to the atoms in the dictionary D̄ has a beneficial
impact on coherence.

Let us introduce w = [
w1 · · · wNw

]ᵀ
as the real-valued

vector of the weights. We define a new dictionary matrix Ḡ
whose generic column is

ḡh = w ◦ d̄h (14)

where ◦ denotes the Hadamard product. Using (11), we obtain
the expression of the coherence between atoms in the weighted
dictionary, which is

μh,k =

∣∣∣∣∑ Nw−1
2

n=− Nw−1
2

w2
n+ Nw+1

2

e− j2π� fh,knTs

∣∣∣∣
‖w‖2 . (15)

It is extremely significant to observe that μh,k represents
the normalized magnitude of the DTFT of the vector of the
squared weights (therefore an even function) evaluated in
� fh,k . Hence, if the weights correspond to the square root of
a window function, the coherence reflects its spectral content.
The target is thus choosing the window function that enables
better support recovery under the operating conditions that
PMUs may face. To fix the ideas, let us consider a sampling

Fig. 1. Coherence as a function of the frequency separation between atoms
for different weighting windows.

rate fs = 5 kHz and Nw = 431. In this context, Fig. 1
reports μh,k between the columns of Ḡ as a function of the
absolute value of � fh,k .

It is not surprising that, when the rectangular window is
adopted (therefore Ḡ = D̄), the coherence plot exhibits the
narrowest main lobe, namely, the lowest similarity between
atoms having small frequency separation (below 14 Hz).
However, the slowly decaying sidelobes make μh,k remain
significant even in case of fairly large values of � fh,k : this may
lead to errors during support recovery because of cumulative
leakage effects. In particular, the third lobe brings coherence
above 0.12 around 30 Hz: considering reporting rates of 50 fps
and above, this could undermine the detection and suppression
of OoB interference, which notably represents a challenging
scenario for PMU algorithms.

When weights are derived from a Hann window, μh,k shows
the main lobe having double width when compared to the
previous case, but, as expected, the sidelobes quickly decrease.
This is a significant benefit with respect to the rectangular
window, but the coherence in the critical region for OoB
interference rejection remains still significant because of the
first sidelobe.

The most natural choice to overcome this limitation is
choosing the Hamming window, namely, the two-term cosine
window aimed at minimizing the height of the first sidelobe.
As shown in Fig. 1, we have the additional benefit of smaller
coherence between nearby atoms. However, even better results
can be reached if weights are obtained from a Chebyshev
window having 45 dB sidelobe magnitude attenuation. It is
worth noticing how the obtained coherence resembles the pass
bandwidth of a PMU with a reporting rate of 50 fps. The
main lobe becomes slightly narrower and, more important, the
maximum magnitude of the sidelobes is further reduced; thus,
better detection of frequency components is expected.

B. Enhanced Support Recovery

In order to exploit the potential benefits of dictionary Ḡ,
the TFM approach must be properly modified, thus leading to
the weighted TFM (CS-WTFM or WTFM in the following)
approach. Let us start from the TFM model (1) and let us
multiply both the members by matrix diag(w), whose diagonal
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entries are the elements of w, thus obtaining

w ◦ x(tr ) = diag(w)B̄p̄(tr ) + rw = B̄wp̄(tr ) + rw (16)

where rw is the weighted version of the mismatch between
model and samples. Reminding (3), (4), and (14), B̄w can be
obtained as the solution of the CS problem using dictionary
Ḡ instead of D̄. The weighted samples can be used to look
for Sw through a modified procedure. The support set Sw is
redefined as

Sw =
{

ĥi , i ∈ {1, . . . , NSw }, ĥi = arg max
h∈�w

i

∣∣ḡH
h rw

i−1

∣∣} (17)

where rw
i−1 is the residual of the weighted samples before

the i th iteration, NSw is the cardinality of Sw , and �w
i repre-

sents the set of candidate indexes to be added to the support
at the i th step. The step-by-step procedure resembles that of
the TFM approach for synchrophasor, frequency, and ROCOF
estimation, and it just requires weighting the samples while
using the weighted dictionary. Estimated signal parameters at
the i th iteration read as

ˆ̄pw
i = arg min

p̄

∥∥w ◦ x − B̄w
i p̄

∥∥. (18)

It is also interesting to notice that

ḡH
h rw

i−1 = (
w ◦ d̄h

)H
rw

i−1 = d̄H
h

(
w ◦ rw

i−1

)
. (19)

For i = 1, (19) corresponds to (◦ indicates the Hadamard
power)

ḡH
h rw

0 = d̄H
h

(
w◦2 ◦ x

)
(20)

and thus, it is equivalent to adopt the original dictionary D̄ but
weighting the samples with the square of w.

Although the introduction of weighting significantly
improves support recovery, as discussed in [22], it does not
guarantee that the solution of the CS problem leads to the
optimal signal model, in particular in the presence of inter-
harmonic disturbances. In this article, we propose a simple
technique to refine support recovery, thus leading to more
accurate measurements. The idea is exploiting the estimated
signal model in order to detect whether it is consistent with
the selected support. Specifically, let us assume that we are
in the generic i th iterative step; we have just added the
component ĥi to the support, thus obtaining Sw

i . Considering
the generic lth component included in the support, supposing
that it has position h(l) on the super-resolved frequency grid,
let us assume that Kl ≥ 1, namely that at least a first-order
expansion has been included into the model. The values and
the derivatives of the components included in the support can
be obtained through (18). Furthermore, for each l, we can
evaluate the corresponding angular frequency deviation with
respect to h(l)δω as

�̂ω(l) =
	
[

ˆ̄X (1)
l · X̂

(0)

l

]
∣∣∣ ˆ̄X (0)

l

∣∣∣2 (21)

where 	[·] is the imaginary part operator.
The magnitude of this angular frequency deviation should

be lower than half of the super-resolution step δω if the support

Algorithm 1: CS-EWTFM

Input: x, Ḡ, w, θnoise

Output: Sw , ˆ̄pw,ref

initialize i = 1, Sw
0 = ∅, B̄w

0 = ∅, B̄w
0, 1

2
= ∅

initialize residual rw
0 = w ◦ x

compute residual energy Eres = ‖rw
0 ‖2

while Eres ≥ θnoise & i ≤ Qmax do - support search
consider an appropriate �w

i depending on the needs
find the index ĥi = arg maxh∈�w

i
|ḡH

h rw
i−1|

update Sw
i = Sw

i−1 ∪ {ĥi }
define A(Ki ) with Ki order of expansion of the new
component

update B̄w
i, 1

2
= [B̄w

i−1, 1
2

diag(w)�(ĥiδω)A(Ki)]
update B̄w

i = [B̄w
i, 1

2
Bw

i, 1
2
]

find ˆ̄pw
i = arg minp̄ ‖w ◦ x − B̄w

i p̄‖
compute ĥref(l) ∀ l ∈ {1, . . . , i} using (22)
if ∃ l | ĥref (l) �= h(l) then - support refinement

update Sw
i and define B̄w,ref

i accordingly
find ˆ̄pw,ref

i = arg minp̄ ‖w ◦ x − B̄w,ref
i p̄‖

end
update rw

i+1 = w ◦ x − B̄w
i

ˆ̄pw,ref
i

update Eres = ‖rw
i+1‖2

update i = i + 1
end
return

has been properly retrieved. If this condition is not verified,
there is high probability that the lth atom in the support is
not the best approximation for the component actually present
in the observed signal. Therefore, a better signal model is
obtained if the lth component in the support is replaced with
that whose position on the grid is

ĥref(l) = h(l) + round

(
�̂ω(l)

δω

)
. (22)

Once this procedure has been carried out for all the com-
ponents present in Sw

i , if at least one of them has been
moved, the corresponding matrix B̄w,ref

i of the refined model
is obtained. A better estimate ˆ̄pw,ref

i of the signal parameters
is derived from (18) using the new matrix B̄w,ref

i . Frequency
and ROCOF are finally computed by means of the formulas
reported in [11]. The steps of the proposed approach (EWTFM
in the following) are summarized by Algorithm 1.

IV. TESTS AND RESULTS

The performance of the proposed approach has been
assessed through numerical simulations. A comparison is also
given with the TFM approach proposed in [14] and the WTFM
approach presented in [22]. The sampling rate is fs = 5 kHz,
namely, the same adopted in Section III-A. Frequency reso-
lution δω is a key parameter, which, as previously discussed,
comes out as a tradeoff between the flexibility of the TFM
model (thus setting the theoretical accuracy bound) and the
probability of retrieving the optimal frequency support; in this
respect, δω = 1 Hz is selected. For all the algorithms, the
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expansion order for the truncated Taylor series is K1 = 2 for
the fundamental and Kl = 1 for all the other components.
Accuracy in synchrophasor, frequency, and ROCOF estima-
tions has been quantified in terms of TVE, FE, and RFE
under challenging static and dynamic conditions, which have
been specifically designed to stress the algorithms. The three
adopted indexes are given by the following expressions:

TVE =
∣∣∣ ˆ̄X (0)

1 − X̄ (0)
1

∣∣∣∣∣∣X̄ (0)
1

∣∣∣
FE = f̂1 − f1

RFE = ̂ROCOF − ROCOF. (23)

In the following, the performed tests are divided into
steady-state and dynamic conditions and are used to highlight
the differences among the algorithms with a given underlying
model. Nw = 431 samples are used for each window and
the weighting vector w of both WTFM and EWTFM is
given by the square root of Chebyshev window, as described
in Section III-A. Then, additional tests intended to analyze
the impact of the configuration on the proposed approach
are described. All the test waveforms used in the following
are defined by modifying the parameters of a base signal.
It features a fundamental frequency of 50.55 Hz, i.e., it does
not coincide with the nominal system rate and it does not
belong to the super-resolved frequency grid. Moreover, the
signal support consists also of an interharmonic component
(10% at 19.7 Hz) and the second and third harmonics (2%
and 5%, respectively). In this way, the leakage contributions
are maximized and the algorithms are tested in a nearly worst
case scenario.

A. Steady-State Tests

The test duration has been set equal to 10 s and a reporting
rate of 100 fps is considered.

The first test is derived from the signal frequency range of
the IEC Std off-nominal frequency tests and the fundamental
frequency f varies from 45 to 55 Hz with 0.1-Hz step.
The frequency set is arranged so that the base frequency of
50.55 Hz is included.

Fig. 2(a)–(c) shows the estimation results in terms of max-
imum TVE, |FE|, and |RFE|, respectively. The errors depend
on the fundamental frequency since they are affected by the
impact of long-term leakage of disturbances and, in particular,
of the interharmonic component. Table I reports the maximum
errors in the worst case condition (labeled as off-nominal).
As expected from the results in [22], the approaches based
on windowing clearly outperform the TFM, but EWTFM
presents lower and much flatter errors with respect to WTFM
too. Indeed, the error reduction is up to about 80% for
several frequencies and all the error indexes. This perfor-
mance is mostly due to a better frequency support recovery,
mainly concerning the interharmonic location. When com-
paring EWTFM with WTFM, the most significant improve-
ments occur for frequency and ROCOF estimates, while TVE
values are already very small, in particular if we compare
them with the typical accuracy of instrument transformers.

Fig. 2. Maximum errors as a function of the fundamental frequency for TFM
(plus sign), WTFM (asterisk), and EWTFM (cross).

The maximum estimation errors of EWTFM are well below
0.01%, 0.1 mHz, and 0.1 Hz for synchrophasor (considering
vector error), frequency, and ROCOF measurements, respec-
tively, which represents a remarkable result in the presence of
such challenging input signals.

To assess also the robustness in the presence of wideband
noise, tests have been performed by adding a white uniform
noise to the samples of the base signal at different levels
of signal-to-noise ratio (SNR). Table II reports a selection
of the obtained maximum TVE, |FE| and |RFE| values. The
results confirm that windowing improves the performance.
Also, under this condition, EWTFM provides a better retrieval
of the signal components and thus allows higher estimation
accuracy. For instance, with SNR= 75 dB, the maximum |FE|
goes from 1.36 mHz with WTFM to 0.75 mHz (almost halved)
with EWTFM. The error reduction brought by EWTFM is
more pronounced at higher SNRs, while it is less significant
at 60 dB (about 6% for RFE and negligible for TVE and
FE). It is interesting to highlight that noise influences accuracy
through two different effects: it affects support recovery, and
it is transferred from the samples to the estimates according
to the effective noise bandwidth of the adopted window. The
former one is predominant since WTFM and EWTFM adopt
the same window.

Table I also reports (second column) the maximum errors
corresponding to the worst case scenario when the OoB
interference frequency is varied. During the OoB tests, the
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TABLE I

WORST CASE PERFORMANCE COMPARISON IN
STEADY-STATE CONDITIONS

TABLE II

PERFORMANCE COMPARISON IN THE PRESENCE OF WIDEBAND NOISE

fundamental frequency is kept at 50.55 Hz, and the second-
and third-order harmonic components are present, whereas
the interharmonic frequency fih varies within the bandwidth
provided by the IEC Std for 50-fps reporting rate, namely,
from 10 to 25 Hz (OoB subharmonics) and from 75 to
100 Hz. In compliance with the IEC Std test specifications,
both the intervals have been spanned by selecting ten test
points distributed with a logarithmic scale.

Fig. 3 shows the maximum values of the error indexes
as a function of the interharmonic frequency. The WTFM
improves significantly the estimation accuracy with respect to
TFM apart from the boundaries of the PMU pass bandwidth,
i.e., at 25 and 75 Hz and at fih = 10 Hz, where the
proximity to the image component makes it extremely chal-
lenging to retrieve the optimal support. The EWTFM provides
an accurate support recovery regardless of the considered
interharmonic frequency in the whole OoB range, leading to
remarkable estimation errors. The advantage is more evident
precisely where WTFM suffers from close interharmonic
interference, as shown, for instance, by RFE results for the test
frequencies between 24.6 and 75.4 Hz. The results in Table I
highlight that, in the worst case, TVE and RFE values for
EWTFM are reduced by about one order of magnitude with
respect to WTFM, while FE decreases by about 73% (i.e., one
order of magnitude less than TFM). When fih = 10 Hz, that is,
the worst case of TFM and WTFM for ROCOF measurements
(maximum RFEs are larger than 1 Hz/s), the RFE achieved by
EWTFM is less than 0.005 Hz/s.

Fig. 3. Maximum errors as function of the interharmonic frequency for TFM
(plus sign), WTFM (asterisk), and EWTFM (cross).

Fig. 4. FE during ramp test for TFM (plus sign), WTFM (asterisk), and
EWTFM (cross).

B. Dynamic Tests

After steady-state conditions, the capability to track
dynamic variations has been tested. First, the fundamental
frequency of the base test signal is changed with time accord-
ing to a linear ramp (ROCOF = +1 Hz/s) in the inter-
val 45–55 Hz. The fundamental frequency spans the whole
frequency range used in the off-nominal test, and thus, the
interharmonic frequency is set to 10 Hz to better explore the
algorithm’s performance and check one of the most critical
conditions considered in Fig. 3. Fig. 4 shows the evolution
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TABLE III

MAXIMUM ERROR INDEXES DURING LINEAR FREQUENCY RAMP TEST

Fig. 5. Maximum |RFE| as a function of the AM frequency for TFM (plus
sign), WTFM (asterisk), and EWTFM (cross).

of FE with time during the ramp duration (the ramp lasts for
10 s and the 3.5 cycles after the start and before the end of
the ramp have been excluded according to IEC Std). For TFM
and WTFM, |FE| decreases as the fundamental component
moves far away from the interharmonic and as the frequency
approaches the nominal one. The behavior of EWTFM is
different and its benefits are evident. FE is almost flat notwith-
standing the changing distance between the component of
interest and the interharmonic disturbance due to an accurate
support recovery. Small jumps in the error, corresponding to a
support change in the super-resolved grid, are also visible,
thus reflecting the tracking capability. Maximum |FE| (see
Table III) decreases from 17.94 mHz of TFM to 1.20 mHz
of EWTFM, thus showing that the latter achieves an error
reduction of about one order of magnitude with respect to the
other algorithms. Similar general considerations, even if with
different time patterns, can be drawn for TVE and RFE, whose
maximum values are reported in Table III, confirming the error
reduction for all the indexes.

Sinusoidal amplitude modulation (AM) and phase modula-
tion (PM) of the fundamental component have been included
in the test waveforms, always in the presence of the harmonic
and interharmonic disturbances of the base waveform. The
fundamental frequency is kept at 50 Hz, while the modulation
frequency fm is varied from 0 to 5 Hz (as in the M-class
compliance tests [5]) with 0.2-Hz step. The AM modulation
depth is set to 0.1 p.u., while the PM amplitude is 0.1 rad,
according to the IEC Std.

Fig. 5 shows the maximum |RFE| during the AM test
as a function of fm . WTFM largely improves the ROCOF
estimation with respect to TFM, as already proven in [22],

but EWTFM brings an additional error reduction at higher
modulation frequencies (e.g., when fm = 2.6 Hz, |RFE| is
0.10 and 0.03 Hz/s for WTFM and EWTFM, respectively).
The similarities and differences between WTFM and EWTFM
can be explained as follows. At low modulation frequencies
( fm ≤ 2.4 Hz), there are no support recovery errors for
WTFM since the fundamental component has the nominal
frequency and is thus always located on the super-resolved
grid. In addition, the bandwidth of the time-varying component
associated with fundamental frequency is narrow. EWTFM
and WTFM thus provide the same measurements since the
same frequency support is found. When the bandwidth of the
fundamental component starts widening at higher modulation
frequencies, more interactions with the disturbances occur, and
thus, the support recovery of WTFM is less effective, while
EWTFM is able to refine it, leading to better estimation results.
This improvement is particularly evident in terms of ROCOF
estimation since it is notably the most affected by interference
from harmonic and interharmonic components, thus by errors
in support recovery. Similar considerations hold also for TVE
and FE, but, for the aforementioned reason, the differences
between the two approaches are negligible in this case.

During PM test conditions, the fundamental frequency
deviates from its nominal value proportionally to fm , up to
a maximum of 0.5 Hz. Again, we are always close to the
nominal rate and the reference point on the super-resolved
grid is always the same. As in case of AM, at low modulation
frequencies (below 2.6 Hz), WTFM and EWTFM are the same
and lead to much more accurate synchrophasor, frequency, and
ROCOF measurements than TFM; errors are more than halved
(see [22] for RFE). At higher frequencies, differences between
WTFM and EWTFM emerge, but they are often masked when
looking at maximum errors since support retrieval errors of
WTFM are few and they do not correspond to maximum
error conditions because of the complex interactions of leakage
effects. Anyway, WTFM and EWTFM approaches’ errors are
much lower than TFM (at least −49%, −28%, and −25% for
TVE, FE, and RFE, respectively), but they are very close and
are not reported here for the sake of brevity.

One of the reasons for this similarity between the per-
formance of WTFM and EWTFM under modulations can
be the error floor given by the model mismatch. Indeed,
when frequency ramp is considered, the constant ROCOF
guarantees that the second-order model is fit for modeling
the component of interest, but with PMs, for instance, this
is no longer true. Then, modulation tests have been repeated
in the same conditions, changing only the expansion order
K1 of the fundamental component to 3. Among the new
results, Fig. 6 shows the maximum |FE| as a function of
the modulation frequency for PM. Error values are much
lower than those obtained with K1 = 2, which are up to
82.97, 59.87, and 59.68 mHz for TFM, WTFM, and EWTFM,
respectively, when fm = 5 Hz. Furthermore, EWTFM helps
further reduce the FE beyond WTFM results. We can notice
that the distance between the two curves is between 2.38 and
2.98 mHz and remains nearly constant with the modulation
frequency, leading to improvements between 37% and 79%.
Similar trends can also be observed for TVE and |RFE|
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Fig. 6. Maximum |FE| as a function of the phase-angle modulation frequency
for TFM (plus sign), WTFM (asterisk), and EWTFM (cross) when K1 = 3.

Fig. 7. Maximum TVE as a function of the interharmonic frequency for
TFM (plus sign), WTFM (asterisk), and EWTFM (cross) when Nw = 399.

plots, and thus, they are not reported for the sake of brevity.
In conclusion, the EWTFM is always more effective than the
other algorithms also in the presence of modulations.

Since the performance of EWTFM is always better than
that of TFM and WTFM and helps push the errors far below
standard limits, we have verified also the sensitivity of the
algorithm when the window length is reduced. In particular,
we have assessed the performance when Nw = 399, i.e., less
than four nominal cycles, which constitutes a limit for the
P-class algorithm in IEC Std and thus represents an interesting
turning point. Fig. 7 shows a relevant example of the obtained
results. The maximum TVE is reported for the OoB test,
carried out as described above. When compared to Fig. 3
(top figure), WTFM is affected by the reduced selectivity due
to a shorter window length and its performance is worse than
that of TFM particularly when the interharmonic component
is closer to the fundamental one. EWTFM, thanks to its
enhanced support retrieval, is still the most accurate algorithm
(e.g., maximum TVE −98% and −95% with respect to TFM
and WTFM, respectively, for fih = 75 Hz).

EWTFM is designed to suitably compensate for spurious
interferences in dynamic conditions. In order to validate this
feature, we have compared its performance against the iterative
interpolated DFT (iIpDFT). As shown in [28], the iIpDFT is

TABLE IV

PERFORMANCE COMPARISON EWTFM VERSUS IIPDFT

a synchrophasor estimation algorithm that relies on a static
signal model, but it adaptively rejects the injections from
harmonic and interharmonic components and proves, when
properly configured, to be compliant with both P- and M-class
requirements of the IEC Std. For this analysis, we considered
two of the previous test conditions: the steady-state test with
fundamental frequency equal to 50.55 Hz and the AM test
with modulation frequency equal to 2 and 5 Hz. For the
sake of comparability, the iIpDFT has been configured with a
Hann window, whose duration is four nominal cycles. Given
a reporting rate of 50 fps, each test has 3-s duration and the
worst case performance indexes are reported in Table IV.

The error comparison confirms the remarkable performance
of the iIpDFT algorithm in steady-state conditions, whereas
the dynamic tests show a significant accuracy degradation,
proportional to the modulation frequency. Conversely, the
EWTFM guarantees a nearly constant performance in all the
tests. The motivation has to be found in two aspects. First,
the EWTFM relies on a dynamic signal model that better fits
a signal with AM. Second, the iIpDFT approach has more
difficulty in identifying the interharmonic component due to
the larger leakage coming from the fundamental component.

C. Considerations on Computation Time

EWTFM involves a frequency support refinement step,
which leads to a further matrix inversion and estimation if the
support is updated. The additional computational burden cor-
responds to the execution of (18) with the new matrix B̄w,ref

i to
find ˆ̄pw,ref

i . The overall computation time is indeed composed
of the support recovery time, the first estimation time, the
support refinement time, and the second estimation time. This
means that EWTFM almost doubles the estimation time con-
tribution with respect to WTFM (support refinement time
is almost negligible), but support recovery time is typically
predominant, and thus, the relative increase in computation
time is marginal. In addition, the enhanced recovery of the
relevant components performed at each iteration by EWTFM
might also, under some circumstances, reduce the support
cardinality preventing the algorithm from finding spurious
components and thus better matching the samples. In this case,
the overall computation time might even be reduced.

Tests have been performed to find the average execution
time on 500 estimations using a Windows 10 personal com-
puter equipped with Intel Core i7-10510U CPU 1.80 GHz and
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16-GB RAM. In particular, assuming that Nw = 399 while
considering the same test scenario as in Table II (off-nominal
frequency, harmonics, interharmonic, and noise), the average
estimation time for EWTFM is 2.8 ms with a standard
deviation of 0.5 ms. The average increase in computation time
with respect to WTFM is about 10%, thus confirming that
the most time-consuming step is support recovery. However,
it is important to highlight that the adopted code is run in
MATLAB and also not optimized. Here, the intent is mainly to
show that a real-time computation at a reporting rate of 100 fps
can be obtained without particular effort as shown in [15]. The
iIpDFT algorithm configured as in Section IV-B and executed
under the same test conditions gives an average computation
time of 2.8 ms with a standard deviation of 0.4 ms, thus
comparable with the proposed approach.

V. CONCLUSION

This article proposes EWTFM as an enhanced Taylor–
Fourier multifrequency model for the estimation of syn-
chrophasor, frequency, and ROCOF. The proposed approach
relies on the joint application of a weighting function for min-
imizing the leakage injections due to spurious components and
an iterative spectral support correction based on the estimated
first derivative of each component. In particular, the window
function improves the dictionary coherence and enables a
more precise identification of close-by spectral components,
while the derivative correction allows for guaranteeing the
best dictionary representation in dynamic conditions and better
tracking of time-varying trends. The obtained results highlight
the remarkable accuracy improvement that can be reached
due to the EWTFM approach under very demanding static
and dynamic scenarios. A sensitivity analysis investigates the
impact of window length and expansion order on the final
estimation accuracy. A thorough performance characterization
confirms the potential of the proposed approach that guaran-
tees a remarkable RFE lower than 200 mHz/s even in the
presence of concurrent frequency ramps or modulations and
high distortion levels.
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