Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology Madras, Chennai, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany
More information about this series at http://www.springer.com/series/7407
Osvaldo Gervasi · Beniamino Murgante
Sanjay Misra · Elena Stankova
Carmelo M. Torre · Ana Maria A. C. Rocha
David Taniar · Bernady O. Apduhan
Eufemia Tarantino · Yeonseung Ryu (Eds.)

Computational Science
and Its Applications –
ICCSA 2018

18th International Conference
Melbourne, VIC, Australia, July 2–5, 2018
Proceedings, Part III

Springer
<table>
<thead>
<tr>
<th>Editors</th>
<th>University</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Osvaldo Gervasi</td>
<td>University of Perugia</td>
<td>Italy</td>
</tr>
<tr>
<td>Ana Maria A. C. Rocha</td>
<td>University of Minho</td>
<td>Portugal</td>
</tr>
<tr>
<td>Benjamin Murgante</td>
<td>University of Basilicata</td>
<td>Italy</td>
</tr>
<tr>
<td>David Taniari</td>
<td>Monash University</td>
<td>Australia</td>
</tr>
<tr>
<td>Sanjay Misra</td>
<td>Covenant University</td>
<td>Nigeria</td>
</tr>
<tr>
<td>Bernady O. Apduhan</td>
<td>Kyushu Sangyo University</td>
<td>Japan</td>
</tr>
<tr>
<td>Elena Stankova</td>
<td>Saint Petersburg State University</td>
<td>Russia</td>
</tr>
<tr>
<td>Eufemia Tarantino</td>
<td>Politecnico di Bari</td>
<td>Italy</td>
</tr>
<tr>
<td>Carmelo M. Torre</td>
<td>Polytechnic University of Bari</td>
<td>Italy</td>
</tr>
<tr>
<td>Yeonseung Ryu</td>
<td>Myongji University</td>
<td>Korea</td>
</tr>
</tbody>
</table>

ISSN 0302-9743 (print) ISSN 1611-3349 (electronic)

Library of Congress Control Number: 2018947453

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer International Publishing AG, part of Springer Nature 2018

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by the registered company Springer International Publishing AG part of Springer Nature

The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland
Preface

These multiple volumes (LNCS volumes 10960–10964) consist of the peer-reviewed papers presented at the 2018 International Conference on Computational Science and Its Applications (ICCSA 2018) held in Melbourne, Australia, during July 2–5, 2018.

ICCSA 2018 was a successful event in the International Conferences on Computational Science and Its Applications (ICCSA) conference series, previously held in Trieste, Italy (2017), Beijing, China (2016), Banff, Canada (2015), Guimarães, Portugal (2014), Ho Chi Minh City, Vietnam (2013), Salvador, Brazil (2012), Santander, Spain (2011), Fukuoka, Japan (2010), Suwon, South Korea (2009), Perugia, Italy (2008), Kuala Lumpur, Malaysia (2007), Glasgow, UK (2006), Singapore (2005), Assisi, Italy (2004), Montreal, Canada (2003), and (as ICCS) Amsterdam, The Netherlands (2002) and San Francisco, USA (2001).

Computational science is a main pillar of most current research and industrial and commercial activities and it plays a unique role in exploiting ICT innovative technologies. The ICCSA conference series has been providing a venue to researchers and industry practitioners to discuss new ideas, to share complex problems and their solutions, and to shape new trends in computational science.

Apart from the general tracks, ICCSA 2018 also included 33 international workshops, in various areas of computational sciences, ranging from computational science technologies, to specific areas of computational sciences, such as computer graphics and virtual reality. The program also featured three keynote speeches.

The success of the ICCSA conference series, in general, and ICCSA 2018, in particular, is due to the support of many people: authors, presenters, participants, keynote speakers, session chairs, Organizing Committee members, student volunteers, Program Committee members, International Advisory Committee members, International Liaison chairs, and people in other various roles. We would like to thank them all. We would also like to thank Springer for their continuous support in publishing the ICCSA conference proceedings and for sponsoring some of the paper awards.

July 2018

David Taniar
Bernady O. Apduhan
Osvaldo Gervasi
Beniamino Murgante
Ana Maria A. C. Rocha
Welcome to Melbourne

Welcome to “The Most Liveable City”1. Melbourne, Australia. ICCSA 2018 was held at Monash University, Caulfield Campus, during July 2–5, 2018.

Melbourne is the state capital of Victoria and is currently the second most populous city in Australia, behind Sydney. There are lots of things to do and experience while in Melbourne. Here is an incomplete list:

- Visit and experience Melbourne’s best coffee shops
- Discover Melbourne’s hidden laneways and rooftops
- Walk along the Yarra River
- Eat your favourite food (Chinese, Vietnamese, Malaysian, Italian, Greek, anything, … you name it)
- Buy souvenirs at the Queen Victoria Market
- Go up to the Eureka, the tallest building in Melbourne
- Visit Melbourne’s museums
- Walk and enjoy Melbourne’s gardens and parks
- Visit the heart-shape lake, Albert Park Lake, the home of the F1 Grand Prix
- Simply walk in the city to enjoy Melbourne experience
- Try Melbourne’s gelato ice cream

Basically, it is easy to live in and to explore Melbourne, and I do hope that you will have time to explore the city of Melbourne.

The venue of ICCSA 2018 was in Monash University. Monash University is a member of Go8, which is considered the top eight universities in Australia. Monash University has a number of campuses and centers. The two main campuses in Melbourne are Clayton and Caulfield. ICCSA 2018 was held on Caulfield Campus, which is only 12 minutes away from Melbourne CBD by train.

The Faculty of Information Technology is one of the ten faculties at Monash University. The faculty has more than 100 full-time academic staff (equivalent to the rank of Assistant Professor, Associate Professor, and Professor).

I do hope that you will enjoy not only the conference, but also Melbourne.

David Taniar

Organization

ICCSA 2018 was organized by Monash University (Australia), University of Perugia (Italy), Kyushu Sangyo University (Japan), University of Basilicata (Italy), and University of Minho, (Portugal).

Honorary General Chairs

Antonio Laganà
Norio Shiratori
Kenneth C. J. Tan
University of Perugia, Italy
Tohoku University, Japan
Sardina Systems, Estonia

General Chairs

David Taniar
Bernady O. Apduhan
Monash University, Australia
Kyushu Sangyo University, Japan

Program Committee Chairs

Osvaldo Gervasi
Beniamino Murgante
Ana Maria A. C. Rocha
University of Perugia, Italy
University of Basilicata, Italy
University of Minho, Portugal

International Advisory Committee

Jemal Abawajy
Dharma P. Agrawal
Marina L. Gavrilova
Claudia Bauzer Medeiros
Manfred M. Fisher
Yee Leung
Deakin University, Australia
University of Cincinnati, USA
University of Calgary, Canada
University of Campinas, Brazil
Vienna University of Economics and Business, Austria
Chinese University of Hong Kong, SAR China

International Liaison Chairs

Ana Carla P. Bitencourt
Giuseppe Borruso
Alfredo Cuzzocrea
Maria Irene Falcão
Robert C. H. Hsu
Tai-Hoon Kim
Sanjay Misra
Takashi Naka
Universidade Federal do Reconcavo da Bahia, Brazil
University of Trieste, Italy
University of Trieste, Italy
University of Minho, Portugal
Chung Hua University, Taiwan
Hannam University, South Korea
Covenant University, Nigeria
Kyushu Sangyo University, Japan
Rafael D. C. Santos National Institute for Space Research, Brazil
Maribel Yasmine Santos University of Minho, Portugal

Workshop and Session Organizing Chairs

Beniamino Murgante University of Basilicata, Italy
Sanjay Misra Covenant University, Nigeria
Jorge Gustavo Rocha University of Minho, Portugal

Award Chair

Wenny Rahayu La Trobe University, Australia

Web Chair

A. S. M. Kayes La Trobe University, Australia

Publicity Committee Chairs

Elmer Dadios De La Salle University, Philippines
Hong Quang Nguyen International University (VNU-HCM), Vietnam
Daisuke Takahashi Tsukuba University, Japan
Shangwang Wang Beijing University of Posts and Telecommunications, China

Workshop Organizers

Advanced Methods in Fractals and Data Mining for Applications (AMFDMA 2018)

Yeliz Karaca IEEE
Carlo Cattani Tuscia University, Italy
Majaz Moonis University of Massachusetts Medical School, USA

Advances in Information Systems and Technologies for Emergency Management, Risk Assessment and Mitigation Based on Resilience Concepts (ASTER 2018)

Maurizio Pollino ENEA, Italy
Marco Vona University of Basilicata, Italy
Beniamino Murgante University of Basilicata, Italy
Grazia Fattoruso ENEA, Italy

Advances in Web-Based Learning (AWBL 2018)

Mustafa Murat Inceoglu Ege University, Turkey
Birol Ciloglugil Ege University, Turkey
Bio- and Neuro-inspired Computing and Applications (BIONCA 2018)
Nadia Nedjah
State University of Rio de Janeiro, Brazil
Luiza de Macedo Mourell
State University of Rio de Janeiro, Brazil

Computer-Aided Modeling, Simulation, and Analysis (CAMSA 2018)
Jie Shen
University of Michigan, USA
Hao Chen
Shanghai University of Engineering Science, China
Youguo He
Jiangsu University, China

Computational and Applied Statistics (CAS 2018)
Ana Cristina Braga
University of Minho, Portugal

Computational Geometry and Security Applications (CGSA 2018)
Marina L. Gavrilova
University of Calgary, Canada

Computational Movement Analysis (CMA 2018)
Farid Karimipour
University of Tehran, Iran

Computational Mathematics, Statistics and Information Management (CMSIM 2018)
M. Filomena Teodoro
Lisbon University and Portuguese Naval Academy, Portugal

Computational Optimization and Applications (COA 2018)
Ana Maria Rocha
University of Minho, Portugal
Humberto Rocha
University of Coimbra, Portugal

Computational Astrochemistry (CompAstro 2018)
Marzio Rosi
University of Perugia, Italy
Dimitrios Skouteris
Scuola Normale Superiore di Pisa, Italy
Albert Rimola
Universitat Autònoma de Barcelona, Spain

Cities, Technologies, and Planning (CTP 2018)
Giuseppe Borruso
University of Trieste, Italy
Beniamino Murgante
University of Basilicata, Italy

Defense Technology and Security (DTS 2018)
Yeonseung Ryu
Myongji University, South Korea
Econometrics and Multidimensional Evaluation in the Urban Environment (EMEUE 2018)
Carmelo M. Torre Polytechnic of Bari, Italy
Maria Cerreta University of Naples Federico II, Italy
Pierluigi Morano Polytechnic of Bari, Italy
Paola Perchinunno University of Bari, Italy

Future Computing Systems, Technologies, and Applications (FISTA 2018)
Bernady O. Apdahan Kyushu Sangyo University, Japan
Rafael Santos National Institute for Space Research, Brazil
Shangguang Wang Beijing University of Posts and Telecommunications, China
Kazuaki Tanaka Kyushu Institute of Technology, Japan

Geographical Analysis, Urban Modeling, Spatial Statistics (GEO-AND-MOD 2018)
Giuseppe Borрусo University of Trieste, Italy
Beniamino Murgante University of Basilicata, Italy
Hartmut Asche University of Potsdam, Germany

Geomatics for Resource Monitoring and Control (GRMC 2018)
Eufemia Tarantino Polytechnic of Bari, Italy
Umberto Fratino Polytechnic of Bari, Italy
Benedetto Figorito ARPA Puglia, Italy
Antonio Novelli Polytechnic of Bari, Italy
Rosa Lasaponara Italian Research Council, IMIA-CNR, Italy

International Symposium on Software Quality (ISSQ 2018)
Sanjay Misra Covenant University, Nigeria

Web-Based Collective Evolutionary Systems: Models, Measures, Applications (IWCES 2018)
Alfredo Milani University of Perugia, Italy
Clement Leung United International College, Zhourhai, China
Valentina Franzoni University of Rome La Sapienza, Italy
Valentina Poggioni University of Perugia, Italy

Large-Scale Computational Physics (LSCP 2018)
Elise de Doncker Western Michigan University, USA
Fukako Yuasa High Energy Accelerator Research Organization, KEK, Japan
Hideo Matsufuru High Energy Accelerator Research Organization, KEK, Japan
Land Use Monitoring for Soil Consumption Reduction (LUMS 2018)
Carmelo M. Torre Polytechnic of Bari, Italy
Alessandro Bonifazi Polytechnic of Bari, Italy
Pasquale Balena Polytechnic of Bari, Italy
Beniamino Murgante University of Basilicata, Italy
Eufemia Tarantino Polytechnic of Bari, Italy

Mobile Communications (MC 2018)
Hyunseung Choo Sungkyunkwan University, South Korea

Scientific Computing Infrastructure (SCI 2018)
Elena Stankova Saint-Petersburg State University, Russia
Vladimir Korkhov Saint-Petersburg State University, Russia

International Symposium on Software Engineering Processes and Applications (SEPA 2018)
Sanjay Mista Covenant University, Nigeria

Smart Factory Convergence (SFC 2018)
Jongpil Jeong Sungkyunkwan University, South Korea

Is a Smart City Really Smart? Models, Solutions, Proposals for an Effective Urban and Social Development (Smart_Cities 2018)
Giuseppe Borusso University of Trieste, Italy
Chiara Garau University of Cagliari, Italy
Ginevra Balletto University of Cagliari, Italy
Beniamino Murgante University of Basilicata, Italy
Paola Zamberlin University of Florence, Italy

Sustainability Performance Assessment: Models, Approaches and Applications Toward Interdisciplinary and Integrated Solutions (SPA 2018)
Francesco Scorza University of Basilicata, Italy
Valentin Greco Lucía Blaga University on Sibiu, Romania
Jolanta Dvarioniene Kaunas University, Lithuania
Sabrina Lai Cagliari University, Italy

Advances in Spatio-Temporal Analytics (ST-Analytics 2018)
Rafael Santos Brazilian Space Research Agency, Brazil
Karine Reis Ferreira Brazilian Space Research Agency, Brazil
Joao Moura Pires New University of Lisbon, Portugal
Maribel Yasmina Santos University of Minho, Portugal
Theoretical and Computational Chemistry and Its Applications (TCCA 2018)

M. Noelia Faginas Lago University of Perugia, Italy
Andrea Lombardi University of Perugia, Italy

Tools and Techniques in Software Development Processes (ITSDP 2018)

Sanjay Misra Covenant University, Nigeria

Challenges, Trends and Innovations in VGI (VGI 2018)

Beniamino Murgante University of Basilicata, Italy
Rodrigo Tapia-McClung Centro de Investigación en Geografía y Geomática Ing
Jorge L. Tamay, Mexico
Claudia Ceppi Polytechnic of Bari, Italy
Jorge Gustavo Rocha University of Minho, Portugal

Virtual Reality and Applications (VRA 2018)

Osvaldo Gervasi University of Perugia, Italy
Sergio Tasso University of Perugia, Italy

International Workshop on Parallel and Distributed Data Mining (WPDM 2018)

Massimo Cafaro University of Salento, Italy
Italo Epicoco University of Salento, Italy
Marco Pulimeno University of Salento, Italy
Giovanni Aloisio University of Salento, Italy

Program Committee

Kenny Adamson University of Ulster, UK
Vera Afreixo University of Aveiro, Portugal
Filipe Alvelos University of Minho, Portugal
Hartmut Asche University of Potsdam, Germany
Michela Bertolotto University College Dublin, Ireland
Sandro Bimonte CEMAGREF, TSCF, France
Rod Blais University of Calgary, Canada
Ivan Blečič University of Sassari, Italy
Giuseppe Borruso University of Trieste, Italy
Ana Cristina Braga University of Minho, Portugal
Yves Caniou Lyon University, France
José A. Cardoso e Cunha Universidade Nova de Lisboa, Portugal
Rui Cardoso University of Beira Interior, Portugal
Leocadio G. Casado University of Almeria, Spain
Carlo Cattani University of Salerno, Italy
Mete Celik Erciyes University, Turkey
Alexander Chemeris National Technical University of Ukraine KPI, Ukraine
Min Young Chung Sungkyunkwan University, South Korea
Florbela Maria da Cruz
Domingues Correia
Polytechnic Institute of Viana do Castelo, Portugal

Gilberto Corso Pereira
Federal University of Bahia, Brazil

Carla Dal Sasso Freitas
Universidade Federal do Rio Grande do Sul, Brazil

Pradesh Debba
The Council for Scientific and Industrial Research (CSIR), South Africa

Hendrik Decker
Instituto Tecnológico de Informática, Spain

Frank Devai
London South Bank University, UK

Rodolphe Devillers
Memorial University of Newfoundland, Canada

Joana Matos Dias
University of Coimbra, Portugal

Paolino Di Felice
University of L’Aquila, Italy

Prabu Dorairaj
NetApp, India/USA

M. Irene Falcão
University of Minho, Portugal

Cherry Liu Fang
U.S. DOE Ames Laboratory, USA

Florbela P. Fernandes
Polytechnic Institute of Bragança, Portugal

Jose-Jesus Fernandez
National Centre for Biotechnology, CSIS, Spain

Paula Odete Fernandes
Polytechnic Institute of Bragança, Portugal

Adelaide de Fátima Baptista
University of Aveiro, Portugal

Valente Freitas

Manuel Carlos Figueiredo
University of Minho, Portugal

Maria Antonia Forjaz
University of Minho, Portugal

Maria Célia Furtado Rocha
PRODEB-PósCultura/UFBA, Brazil

Paulino Jose Garcia Nieto
University of Oviedo, Spain

Jerome Gensel
LSR-IMAG, France

Maria Gioutzi
National Technical University, Athens, Greece

Arminda Manuela Andrade Pereira Gonçalves
University of Minho, Portugal

Andrzej M. Goscinski
Deakin University, Australia

Sevin Günüç
Izmir University of Economics, Turkey

Alex Hagen-Zanker
University of Cambridge, UK

Malgorzata Hanzl
Technical University of Lodz, Poland

Shanmugasundaram Hariharan
B.S. Abdur Rahman University, India

Eligius M. T. Hendrix
University of Malaga/Wageningen University, Spain/The Netherlands

Tutut Herawan
Universitas Teknologi Yogyakarta, Indonesia

Hiyoshi Hisamoto
Gunma University, Japan

Fermin Huarte
University of Barcelona, Spain

Mustafa Inceoglu
EGE University, Turkey

Peter Jimack
University of Leeds, UK

Qun Jin
Waseda University, Japan

A. S. M. Kayes
La Trobe University, Australia

Farid Karimipour
Vienna University of Technology, Austria

Baris Kazar
Oracle Corp., USA

Maulana Adhinugraha Kiki
Telkom University, Indonesia

DongSeong Kim
University of Canterbury, New Zealand
<table>
<thead>
<tr>
<th>Name</th>
<th>Institution and Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taihoon Kim</td>
<td>Hannam University, South Korea</td>
</tr>
<tr>
<td>Ivana Kolingerova</td>
<td>University of West Bohemia, Czech Republic</td>
</tr>
<tr>
<td>Rosa Lasaponara</td>
<td>National Research Council, Italy</td>
</tr>
<tr>
<td>Maurizio Lazzari</td>
<td>National Research Council, Italy</td>
</tr>
<tr>
<td>Cheng Siong Lee</td>
<td>Monash University, Australia</td>
</tr>
<tr>
<td>Sangyoun Lee</td>
<td>Yonsei University, South Korea</td>
</tr>
<tr>
<td>Jongchun Lee</td>
<td>Kunsan National University, South Korea</td>
</tr>
<tr>
<td>Clement Leung</td>
<td>Hong Kong Baptist University, Hong Kong, SAR</td>
</tr>
<tr>
<td></td>
<td>China</td>
</tr>
<tr>
<td>Chendong Li</td>
<td>University of Connecticut, USA</td>
</tr>
<tr>
<td>Gang Li</td>
<td>Deakin University, Australia</td>
</tr>
<tr>
<td>Ming Li</td>
<td>East China Normal University, China</td>
</tr>
<tr>
<td>Fang Liu</td>
<td>AMES Laboratories, USA</td>
</tr>
<tr>
<td>Xin Liu</td>
<td>University of Calgary, Canada</td>
</tr>
<tr>
<td>Savino Longo</td>
<td>University of Bari, Italy</td>
</tr>
<tr>
<td>Tinghuai Ma</td>
<td>NanJing University of Information Science and Technology, China</td>
</tr>
<tr>
<td>Luca Mancinelli</td>
<td>Trinity College Dublin, Ireland</td>
</tr>
<tr>
<td>Ernesto Marcheggianni</td>
<td>Katholieke Universiteit Leuven, Belgium</td>
</tr>
<tr>
<td>Antonino Marvuglia</td>
<td>Research Centre Henri Tudor, Luxembourg</td>
</tr>
<tr>
<td>Nicola Masini</td>
<td>National Research Council, Italy</td>
</tr>
<tr>
<td>Eric Medvet</td>
<td>University of Trieste, Italy</td>
</tr>
<tr>
<td>Nirvana Meratnia</td>
<td>University of Twente, The Netherlands</td>
</tr>
<tr>
<td>Alfredo Milani</td>
<td>University of Perugia, Italy</td>
</tr>
<tr>
<td>Giuseppe Modica</td>
<td>University of Reggio Calabria, Italy</td>
</tr>
<tr>
<td>José Luis Montañà</td>
<td>University of Cantabria, Spain</td>
</tr>
<tr>
<td>Maria Filipa Mourão</td>
<td>IP from Viana do Castelo, Portugal</td>
</tr>
<tr>
<td>Laszlo Neumann</td>
<td>University of Girona, Spain</td>
</tr>
<tr>
<td>Kok-Leong Ong</td>
<td>Deakin University, Australia</td>
</tr>
<tr>
<td>Belen Palop</td>
<td>Universidad de Valladolid, Spain</td>
</tr>
<tr>
<td>Marcin Paprzycki</td>
<td>Polish Academy of Sciences, Poland</td>
</tr>
<tr>
<td>Eric Pardege</td>
<td>La Trobe University, Australia</td>
</tr>
<tr>
<td>Kwangjin Park</td>
<td>Wookwang University, South Korea</td>
</tr>
<tr>
<td>Ana Isabel Pereira</td>
<td>Polytechnic Institute of Bragança, Portugal</td>
</tr>
<tr>
<td>Maurizio Pollino</td>
<td>Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Italy</td>
</tr>
<tr>
<td>Alenka Poplin</td>
<td>University of Hamburg, Germany</td>
</tr>
<tr>
<td>Vidyasagar Potdar</td>
<td>Curtin University of Technology, Australia</td>
</tr>
<tr>
<td>David C. Prosperi</td>
<td>Florida Atlantic University, USA</td>
</tr>
<tr>
<td>Wenny Rahayu</td>
<td>La Trobe University, Australia</td>
</tr>
<tr>
<td>Jerzy Respondek</td>
<td>Silesian University of Technology, Poland</td>
</tr>
<tr>
<td>Humberto Rocha</td>
<td>INESC-Coimbra, Portugal</td>
</tr>
<tr>
<td>Alexey Rodionov</td>
<td>Institute of Computational Mathematics and Mathematical Geophysics, Russia</td>
</tr>
</tbody>
</table>
Jon Rokne University of Calgary, Canada
Octavio Roncero CSIC, Spain
Maytham Safar Kuwait University, Kuwait
Chiara Saracino A.O. Ospedale Niguarda Ca’ Granda - Milano, Italy
Haiduke Sarafian The Pennsylvania State University, USA
Marco Paulo Seabra dos Reis University of Coimbra, Portugal
Jie Shen University of Michigan, USA
Qi Shi Liverpool John Moores University, UK
Dale Shires U.S. Army Research Laboratory, USA
Inês Soares University of Coimbra, Portugal
Takuo Suganuma Tohoku University, Japan
Sergio Tasso University of Perugia, Italy
Ana Paula Teixeira University of Trás-os-Montes and Alto Douro, Portugal
Senhorinha Teixeira University of Minho, Portugal
Parimala Thulasiraman University of Manitoba, Canada
Carmelo Torre Polytechnic of Bari, Italy
Javier Martinez Torres Centro Universitario de la Defensa Zaragoza, Spain
Giuseppe A. Trunfio University of Sassari, Italy
Toshihiro Uchibayashi Kyushu Sangyo University, Japan
Pablo Vanegas University of Cuenca, Ecuador
Marco Vizzari University of Perugia, Italy
Varun Vohra Merck Inc., USA
Koichi Wada University of Tsukuba, Japan
Krzysztof Walkowiak Wrocław University of Technology, Poland
Zequn Wang Intelligent Automation Inc., USA
Robert Weibl University of Zurich, Switzerland
Frank Westad Norwegian University of Science and Technology, Norway
Roland Wismüller Universität Siegen, Germany
Mudasser Wyne SOET National University, USA
Chung-Huang Yang National Kaohsiung Normal University, Taiwan
Xin-Shi Yang National Physical Laboratory, UK
Salim Zabir France Telecom Japan Co., Japan
Haifeng Zhao University of California, Davis, USA
Kewen Zhao University of Qiongzhou, China
Fabiana Zollo University of Venice Cà Foscari, Italy
Albert Y. Zomaya University of Sydney, Australia
Reviewers

Afreixo Vera University of Aveiro, Portugal
Ahmad Rashid Microwave and Antenna Lab, School of Engineering, Korea
Aguilar José Alfonso Universidad Autónoma de Sinaloa, Mexico
Albanese Valentina Università di Bologna, Italy
Alvelos Filipe University of Minho, Portugal
Amato Federico University of Basilicata, Italy
Andrianov Serge Institute for Informatics of Tatarstan Academy of Sciences, Russia
Antunes Marília University Nova de Lisboa, Portugal
Apduhan Bernady Kyushu Sangyo University, Japan
Aquilanti Vincenzo University of Perugia, Italy
Asche Hartmut Potsdam University, Germany
Aslan Zafer Istanbul Aydın University, Turkey
Aytaç Vecdı Ege University, Turkey
Azvedo Ana Instituto Superior de Engenharia do Porto, Portugal
Azzari Margherita Università degli Studi di Firenze, Italy
Bae Ihn-Han Catholic University of Daegu, South Korea
Balei Birım Celal Bayar Üniversitesi, Turkey
Balena Pasquale Politecnico di Bari, Italy
Balucani Nadia University of Perugia, Italy
Barroca Filho Itamir Instituto Metrópole Digital da UFRN (IMD-UFRN), Brazil
Bayrak Şengül Haliç University, Turkey
Behera Ranjan Kumar Indian Institute of Technology Patna, India
Bimonte Sandro IRSTEA, France
Bogdanov Alexander Saint-Petersburg State University, Russia
Bonifazi Alessandro Polytechnic of Bari, Italy
Borruso Giuseppe University of Trieste, Italy
Braga Ana Cristina University of Minho, Portugal
Cafaro Massimo University of Salento, Italy
Canora Filomena University of Basilicata, Italy
Cao Yuanlong University of Saskatchewan, Canada
Caradonna Grazia Polytechnic of Bari, Italy
Cardoso Rui Institute of Telecommunications, Portugal
Carolina Tripp Barba Universidad Autónoma de Sinaloa, Mexico
Caroti Gabriella University of Pisa, Italy
Ceccarello Matteo University of Padova, Italy
Cefalo Raffaela University of Trieste, Italy
Cerretta Maria University Federico II of Naples, Italy
Challa Rajesh Sungkyunkwan University, Korea
Chamundeshwari Arumugam SSN College of Engineering, India
Chaturvedi Krishna Kumar Patil Group of Industries, India
Cho Chulhee Seoul Guarantee Insurance Company Ltd., Korea
<table>
<thead>
<tr>
<th>Name</th>
<th>Institution and Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Choi Jae-Young</td>
<td>Sungkyunkwan University, Korea</td>
</tr>
<tr>
<td>Choi Kwangnam</td>
<td>Korea Institute of Science and Technology Information, Korea</td>
</tr>
<tr>
<td>Choi Seonho</td>
<td>Seoul National University, Korea</td>
</tr>
<tr>
<td>Chung Min Young</td>
<td>Sungkyunkwan University, Korea</td>
</tr>
<tr>
<td>Ciloglugi Birol</td>
<td>Ege University, Turkey</td>
</tr>
<tr>
<td>Coletti Cecilia</td>
<td>University of Chieti, Italy</td>
</tr>
<tr>
<td>Congiu Tanja</td>
<td>Università degli Studi di Sassari, Italy</td>
</tr>
<tr>
<td>Correia Anacleto</td>
<td>Base Naval de Lisboa, Portugal</td>
</tr>
<tr>
<td>Correia Elisete</td>
<td>University of Trás-Os-Montes e Alto Douro, Portugal</td>
</tr>
<tr>
<td>Correia Florbela Maria da Cruz Domingues</td>
<td>Instituto Politécnico de Viana do Castelo, Portugal</td>
</tr>
<tr>
<td>Costa e Silva Eliana</td>
<td>Polytechnic of Porto, Portugal</td>
</tr>
<tr>
<td>Cugurullo Federico</td>
<td>Trinity College Dublin, Ireland</td>
</tr>
<tr>
<td>Damas Bruno</td>
<td>LARSyS, Instituto Superior Técnico, Univ. Lisboa, Portugal</td>
</tr>
<tr>
<td>Dang Thien Binh</td>
<td>Sungkyunkwan University, Korea</td>
</tr>
<tr>
<td>Daniele Bartoli</td>
<td>University of Perugia, Italy</td>
</tr>
<tr>
<td>de Doncker Elise</td>
<td>Western Michigan University, USA</td>
</tr>
<tr>
<td>Degtyarev Alexander</td>
<td>Saint-Petersburg State University, Russia</td>
</tr>
<tr>
<td>Demyanov Vasily</td>
<td>Heriot-Watt University, UK</td>
</tr>
<tr>
<td>Devai Frank</td>
<td>London South Bank University, UK</td>
</tr>
<tr>
<td>Di Fatta Giuseppe</td>
<td>University of Reading, UK</td>
</tr>
<tr>
<td>Dias Joana</td>
<td>University of Coimbra, Portugal</td>
</tr>
<tr>
<td>Dilo Arta</td>
<td>University of Twente, The Netherlands</td>
</tr>
<tr>
<td>El-Zawawy Mohamed A.</td>
<td>Cairo University, Egypt</td>
</tr>
<tr>
<td>Epicoco Italo</td>
<td>Università del Salento, Italy</td>
</tr>
<tr>
<td>Escalona Maria-Jose</td>
<td>University of Seville, Spain</td>
</tr>
<tr>
<td>Falcinelli Stefano</td>
<td>University of Perugia, Italy</td>
</tr>
<tr>
<td>Faginas-Lago M. Noelia</td>
<td>University of Perugia, Italy</td>
</tr>
<tr>
<td>Falcão M. Irene</td>
<td>University of Minho, Portugal</td>
</tr>
<tr>
<td>Famiano Michael</td>
<td>Western Michigan University, USA</td>
</tr>
<tr>
<td>Fattoruso Grazia</td>
<td>ENEA, Italy</td>
</tr>
<tr>
<td>Fernandes Florbela</td>
<td>Escola Superior de Tecnologia e Gestão de Braganca, Portugal</td>
</tr>
<tr>
<td>Fernandes Paula</td>
<td>Escola Superior de Tecnologia e Gestão, Portugal</td>
</tr>
<tr>
<td>Ferraro Petrillo Umberto</td>
<td>University of Rome "La Sapienza", Italy</td>
</tr>
<tr>
<td>Ferreira Fernanda</td>
<td>Escola Superior de Estudos Industriais e de Gestão, Portugal</td>
</tr>
<tr>
<td>Ferrão Maria</td>
<td>Universidade da Beira Interior, Portugal</td>
</tr>
<tr>
<td>Figueiredo Manuel Carlos</td>
<td>Universidade do Minho, Portugal</td>
</tr>
<tr>
<td>Fiorini Lorena</td>
<td>Università degli Studi dell’Aquila, Italy</td>
</tr>
<tr>
<td>Flores Hector</td>
<td>Universidad Distrital Francisco Jose de Caldas, Colombia</td>
</tr>
<tr>
<td>Franzoni Valentina</td>
<td>University of Perugia, Italy</td>
</tr>
</tbody>
</table>
Freitau Adelaide de Fátima
Baptista Valente

Gabrielle Goldie

Garau Chiara

García Ernesto

Gavrilova Marina

Gervasi Osvaldo

Gioia Andrea

Giorgi Giacomo

Giuliano Felice

Goel Rajat

Gonçalves Arminda

Manuela

Gorbachev Yuriy

Gordon-Ross Ann

Goyal Rinkaj

Grilli Luca

Goyal Rinkaj

Guerra Eduardo

Gumgum Sevin

Gülen Kemal Güven

Haczade Ulviye

Han Longzhe

Hanzl Malgorzata

Hayashi Masaki

He Youguo

Hegedus Péter

Herawan Tutut

Ignaccolo Matteo

Imakura Akira

Inceoglu Mustafa

Jagwani Priti

Jang Jeongsook

Jeong Jongpil

Jin Hyunwook

Jorge Ana Maria, Kapenga

John

Kawana Kojiro

Kayes Abu S. M.

Kim JeongAh

Korkhov Vladimir

Kulabukhova Nataliia

Kumar Pawan

Laccetti Giuliano

Laganà Antonio

Lai Sabrina

University of Aveiro, Portugal

BMl Munjal University, India

University of Cagliari, Italy

University of the Basque Country, Spain

University of Calgary, Canada

University of Perugia, Italy

University of Bari, Italy

University of Perugia, Italy

Università degli Studi di Parma, Italy

University of Southern California, USA

University of Minho, Portugal

Geolink Technologies, Russia

University of Florida, USA

Guru Gobind Singh Indraprastha University, India

University of Perugia, Italy

GGS Indraprastha University, India

National Institute for Space Research, Brazil

İzmir Ekonomi Üniversitesi, Turkey

İstanbul Ticaret University, Turkey

Haliç Üniversitesi Uluslararası, Turkey

Nanchang Institute of Technology, Korea

University of Lodz, Poland

University of Calgary, Canada

Jiangsu University, China

University of Szeged, Hungary

Universiti Malaysia Pahang, Malaysia

University of Catania, Italy

University of Tsukuba, Japan

Ege University, Turkey

Indian Institute of Technology Delhi, India

Brown University, Korea

Sungkyunkwan University, Korea

Konkuk University, Korea

Western Michigan University, USA

University of Tokio, Japan

La Trobe University, Australia

George Fox University, USA

St. Petersburg State University, Russia

Saint-Peterburg State University, Russia

Expert Software Consultants Ltd., India

Università degli Studi di Napoli, Italy

Master-up srl, Italy

University of Cagliari, Italy
<table>
<thead>
<tr>
<th>Name</th>
<th>Institution/Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laricchiuta Annarita</td>
<td>CNR-IMIP, Italy</td>
</tr>
<tr>
<td>Lazzari Maurizio</td>
<td>CNR IBAM, Italy</td>
</tr>
<tr>
<td>Lee Soojin</td>
<td>Cyber Security Lab, Korea</td>
</tr>
<tr>
<td>Leon Marcelo</td>
<td>Universidad Estatal Península de Santa Elena – UPSE, Ecuador</td>
</tr>
<tr>
<td>Lim Ilkyun</td>
<td>Sungkyunkwan University, Korea</td>
</tr>
<tr>
<td>Lourenço Vanda Marisa</td>
<td>University Nova de Lisboa, Portugal</td>
</tr>
<tr>
<td>Mancinelli Luca</td>
<td>University of Dublin, Ireland</td>
</tr>
<tr>
<td>Mangiameli Michele</td>
<td>University of Catania, Italy</td>
</tr>
<tr>
<td>Markov Krassimir</td>
<td>Institute for Information Theories and Applications, Bulgaria</td>
</tr>
<tr>
<td>Marques Jorge</td>
<td>Universidade de Coimbra, Portugal</td>
</tr>
<tr>
<td>Marvuglia Antonino</td>
<td>Public Research Centre Henri Tudor, Luxembourg</td>
</tr>
<tr>
<td>Mateos Cristian</td>
<td>Universidad Nacional del Centro, Argentina</td>
</tr>
<tr>
<td>Matsufuji Hideo</td>
<td>High Energy Accelerator Research, Japan</td>
</tr>
<tr>
<td>Maurizio Crispini</td>
<td>Politecnico di Milano, Italy</td>
</tr>
<tr>
<td>Medvet Eric</td>
<td>University of Trieste, Italy</td>
</tr>
<tr>
<td>Mengoni Paolo</td>
<td>Università degli Studi di Firenze, Italy</td>
</tr>
<tr>
<td>Mesiti Marco</td>
<td>Università degli studi di Milano, Italy</td>
</tr>
<tr>
<td>Millham Richard</td>
<td>Durban University of Technology, South Africa</td>
</tr>
<tr>
<td>Mista Sanjay</td>
<td>Covenant University, Nigeria</td>
</tr>
<tr>
<td>Mishra Anurag</td>
<td>Helmholtz Zentrum München, Germany</td>
</tr>
<tr>
<td>Mishra Biswajeetan</td>
<td>University of Szeged, Hungary</td>
</tr>
<tr>
<td>Moscato Pablo</td>
<td>University of Newcastle, Australia</td>
</tr>
<tr>
<td>Moura Pires Joao</td>
<td>Universidade Nova de Lisboa, Portugal</td>
</tr>
<tr>
<td>Moura Ricardo</td>
<td>Universidade Nova de Lisboa, Portugal</td>
</tr>
<tr>
<td>Mourao Maria</td>
<td>Universidade do Minho, Portugal</td>
</tr>
<tr>
<td>Mukhopadhyay Asish</td>
<td>University of Windsor, Canada</td>
</tr>
<tr>
<td>Murgante Beniamino</td>
<td>University of Basilicata, Italy</td>
</tr>
<tr>
<td>Nakasato Naohito</td>
<td>University of Aizu, Japan</td>
</tr>
<tr>
<td>Nguyen Tien Dzung</td>
<td>Sungkyunkwan University, South Korea</td>
</tr>
<tr>
<td>Nicolosi Vittorio</td>
<td>University of Rome Tor Vergata, Italy</td>
</tr>
<tr>
<td>Ogihara Mitoinori</td>
<td>University of Miami, USA</td>
</tr>
<tr>
<td>Oh Sangyoon</td>
<td>Ajou University, Korea</td>
</tr>
<tr>
<td>Oliveira Irene</td>
<td>University of Trás-Os-Montes e Alto Douro, Portugal</td>
</tr>
<tr>
<td>Oluranti Jonathan</td>
<td>Covenant University, Nigeria</td>
</tr>
<tr>
<td>Ozturk Savas</td>
<td>The Scientific and Technological Research Council of Turkey, Turkey</td>
</tr>
<tr>
<td>P. Costa M. Fernanda</td>
<td>University of Minho, Portugal</td>
</tr>
<tr>
<td>Paek Yunheung</td>
<td>Seoul National University, Korea</td>
</tr>
<tr>
<td>Pancham Jay</td>
<td>Durban University of Technology, South Africa</td>
</tr>
<tr>
<td>Pantazis Dimos</td>
<td>Technological Educational Institute of Athens, Greek</td>
</tr>
<tr>
<td>Paolucci Michela</td>
<td>Università degli Studi di Firenze, Italy</td>
</tr>
<tr>
<td>Parvede Eric</td>
<td>La Trobe University, Australia</td>
</tr>
<tr>
<td>Park Hyun Kyoo</td>
<td>Petabi Corp, Korea</td>
</tr>
<tr>
<td>Passaro Tommaso</td>
<td>University of Bari, Italy</td>
</tr>
</tbody>
</table>
Torrisi Vincenzo University of Catania, Italy
Totaro Vincenzo Politecnico di Bari, Italy
Tran Manh Hung Institute for Research and Executive Education, Vietnam

Tripathi Aprna GLA University, India
Trunfio Giuseppe A. University of Sassari, Italy
Tóth Zoltán Hungarian Academy of Sciences, Hungary
Uchihayashi Toshihiro Kyushu Sangyo University, Japan
Ugliengo Piero University of Torino, Italy
Ullman Holly University of Delaware, USA
Vallverdu Jordi Autonomous University of Barcelona, Spain
Valuev Ilya Russian Academy of Sciences, Russia
Vasyanin Dmitry University of Amsterdam, The Netherlands
Vohra Varun University of Electro-Communications, Japan
Voit Nikolay Ulyanovsk State Technical University, Russia

Wale Azeez Nurayhn University of Lagos, Nigeria
Walkowiak Krzysztof Wroclaw University of Technology, Poland
Wallace Richard J. University of Texas, USA
Waluyo Agustinus Borgy Monash University, Australia
Westad Frank CAMO Software AS, USA
Wole Adewumi Covenant University, Nigeria
Xie Y. H. Bell Laboratories, USA
Yamauchi Toshihiro Okayama University, Japan
Yamazaki Takeshi University of Tokyo, Japan
Yao Fenghui Tennessee State University, USA
Yoki Karl Catholic University of Daegu, South Korea
Yoshiura Noriaki Saitama University, Japan
Yuasa Fukuko High Energy Accelerator Research Organization, Korea
Zamperlin Paola University of Florence, Italy
Zollo Fabiana University of Venice “Ca Foscari”, Italy
Zullo Francesco University of L’Aquila, Italy
Živkovic Ljiljana Republic Agency for Spatial Planning, Belgrade
How has Cagliari Changed Its Citizens in Smart Citizens? Exploring the Influence of ITS Technology on Urban Social Interactions

Mauro Coni, Chiara Garau, and Francesco Pinna

DICAAR – Department of Civil and Environmental Engineering and Architecture, University of Cagliari, 09129 Cagliari, Italy
{moni, cgarau, fpinna}@unica.it

Abstract. The main purpose of this article is to evaluate and to achieve a deeper understanding of the changing role of Intelligent Transport Systems (ITSs) not only in transport habits, but also in urban traditional lifestyles of citizens, by using the city of Cagliari (Italy) as a case study. In fact, ITSs play a significant role in determining innovative sustainable transport, for a better use of urban space and time, enhancing also the people quality of life. ITSs help people to move around more easily, safely and economically, in a more environmentally friendly manner. Traditionally, ITSs were used to improve traffic flow, cars speed, easy parking and therefore encouraging the use of the cars, by causing negative impact on social interactions. Nowadays, cities are changing and use technology in order to greatly improve public transport and smart mobility. Specifically, this study analyzes the city of Cagliari (Italy) and its transition toward a smart, sustainable and green mobility, by showing the successful steps from a scenario based on a car-used city to a new scenario based on a free cars-used city due to an integrated, environmental, smart approach.

Keywords: Smart cities · ITS technology · Sustainable mobility · Social interactions · Sustainable urban development · Smart mobility · Cagliari

1 Introduction

For a long time, the model of smart cities appears to be the frontier to which tend for interpreting and organizing our cities, due to monitoring, regulating and making sense of citizen data producing [1]. This revolution in urban and territorial planning strategies is leading local institutions to use social capital to improve city services [2]. These services are mainly related to energy, mobility, government, living, culture, commercial distributions and its activities, environment, communication between citizen and administrators, etc. Among these services, Pinna et al. [3] and Caragliu et al. [4]

F. Pinna—This paper is the result of the joint work of the authors.
consider mobility as a key factor, including urban accessibility, traditional transport communication infrastructures, availability of ICT infrastructures, sustainable, innovative and safe transport systems. Bellini et al. [5] argue that traffic/flow analysis is a major prerequisite for governing and planning a modern city. From this point of view, it can be useful the supportive role of the so called Intelligent Transportation Systems (ITSs) for transportation [5]. In fact, ITSs are able to manage in a smart way problems related to different transport systems, by achieving greater efficiency, productivity, safety and integration in transport networks [6]. Historically, ITS arises from the need to manage the problems caused by traffic congestion through a synergy of new computer techniques for simulation, real-time control and communication networks. Furthermore, government activity in the ITS area (particularly in the United States) has always been motivated by the perceived need for security. Many ITSs were proposed to include road surveillance in this field. Only recently the ITSs have evolved and today are part of today’s city dashboards, integrating information on mobility with other urban services (such as environmental conditions, security, clean, etc.) [5]. Some international rating shown that, over the last 15 years, ITSs have (i) reduced travel time by 20%; (ii) increased the network capacity by 5 to 10%; (iii) decreased the number of accidents of 10–15%; (iv) decreased congestion of 15%; (v) reduced pollutant emissions by 10%; and finally (vi) reduced energy consumption by 12% [7]; (vii) contributed in the energy efficiency of mobility [8].

In addition, literature also shows how ITSs have changed lifestyle, behaviors, increasing the sense of happiness and well-being [9, 10]. This happened also because the world’s population that live in urban areas is increased (54%) and by the 2050 this percentage will be 66% [11]. On September 25th 2015, countries adopted a set of goals, among which making cities inclusive, safe, resilient, and sustainable [12]. For these reasons, urban sustainability, green mobility, and, consequently, understanding the behavior of city users appear to be the most significant challenges of the last millennium.

Starting from these assumptions, the article initially focuses on how the transport and planning approach has changed in public administrations, giving greater emphasis to initiatives concerning green mobility. Subsequently, authors describe the Cagliari’s experience, by highlighting its evolution over time. Finally, the influence of ITS technology on urban social interactions is discussed, using the study’s findings. The paper concludes by underlining pros and cons of ITS technology under the case study of Cagliari.

2 Towards a Green Mobility: The Behavior Change in the City-Users

Over time, public administrators, urban planners, researchers, and transport experts understand that transportation systems and its networks—by what mode, for how long, and for what purpose—influence and affect human well-being [13, 14], also in term of long-term health outcomes [15]. Researchers show that automobile use can have negative effects on the quality of life. In fact, the invasive growth of private vehicles has restrict and degraded many aspects of urban life.
As underlined before, ITSs should be oriented not only to transfer people but also to encourage social interaction and they should be imagined as tools in order to improve the environmental, social and economic well-being of communities. Among all transport systems, a proper walkability improves equity and social inclusion especially regard to impaired citizens [16]. Walking and cycling are considered the best transport mode in densely inhabited areas to enhancing quality of life and, in addition, these transportation modes can compete with the motorized transport in short trips (up 10 min). Many European cities exhibit a progressive modal shift away from private transport towards public transport, walking and cycling. The trend characterized past decade continued in the latest years. For instance, London shows a decrease of 11% from 2000 to 2016 in private transport mode in terms of journey stages is equivalent to a decrease of 10.1% in terms of trips. Similarly, the public transport mode increased of 10.5% in terms of journey stages, and increased of 8.6% in terms of trips since 2000 [17]. In Barcelona the TMB Agency (Transports Metropolitans de Barcelona) – reports in 2016 a great and positive modal split of 29.6% public transport and 14.4%, while in 2001 the value were the opposite [18]. This same trend can be observed in many other European cities, such as Amsterdam, Bordeaux, etc.

On the basis of these assumptions, the road must be interpreted in a more complex and modern way: the functions of streets and squares must also have as its purpose the improvement of citizens needs and perceptions. In fact, they are born for pedestrian use and nowadays instead, are invaded by traffic. A new high-tech visions rethink these places as a relational spaces: interactions of pedestrians are not only a material or physical matter but are based on connected information environments. Literature recognises these environments as a “digital ecosystems” [19]. Communication, information and cognitive function have a crucial rule in distribution of pedestrian flow, considering urban space and the street reconstruction not exclusively as a physical frame [20].

To enhance a much pedestrian space, urban environment can satisfy human heterogeneity. All individuals can be a pedestrian but they have different abilities and purposes. The space occupied by one pedestrian are less than 0.5 m² and by one cyclist less 0.85 m². One car occupied 8.5 m² carrying 1.5 people (mean occupancy coefficient varies over the country between 1.3 to 1.7), while a bus of 25 m² carries 25 people (mean occupancy coefficient varies between 22 to 28).

Pedestrians do not only walk, but they stay in public space, to shopping, meeting, to have food, leisure entertainment spare. When condition for life on foot are improved, walking activities, health outcomes, social and recreational interaction grow.

More roads invite more traffic and better condition bicyclists invite more people to ride bikes, but by improving the condition for pedestrian, not only pedestrian traffic strengthen, grow the city life.

The case study of Cagliari is a significant example because starting from 2000 there has been a greater awareness on the pedestrian use of roads.
3 The Experience of Cagliari (Italy)

The city of Cagliari is the largest city in Sardinia and has the typical urban structure of a coastal city. In its territory it is possible to identify an historical centre, a wider urban area, a port and a airport.

Since the 60’s, people moves from rural areas towards the city, and now 1/4 of Sardinian population lives in the metropolitan city of Cagliari. Like many other cities, Cagliari had negative impact of quickly urbanisation and high traffic. In fact, Cagliari has about 154,000 inhabitants and because it is the leader of the metropolitan city of Cagliari (constituted by seventeen municipalities with about 432,000 inhabitants), it suffers of commuting problematic (Fig. 1).

![Regional access](image)

Fig. 1. Cagliari and its main access points

In recent years, the development of the metropolitan city of Cagliari led to an apparent benefit on the small city area. In fact, if in 2008 the incoming vehicles were 185,000, in the following years, a decrease could be observed: in 2013 were 173,000 the incoming vehicles and, in 2016 were 165,000 with a reduction of around 10.8% in less than 10 years [21].

Before 2010, Cagliari can be represented with these data: about 200,000 inhabitants and 300,000 in the metropolitan area. For this reason, it has suffered even more of commuting problematic, with high prevalence of private vehicles and a public transport with great difficulties. This was the result of the wrong transport policies of the 80’s when it was allowed cars to enter in the city occupying pedestrian areas and squares.
The result of these policies was that until 2010 Cagliari was characterized by no pedestrian areas, no limited traffic zone and no bike infrastructures. At the same time an important urban tramway network was dismissed. As results Cagliari registered loss of social relationship, culture and community peculiarities. Furthermore, an overview of the Metropolitan Area was totally lacking. This was shown because of the seventeen urban centers in the hinterland had seventeen different governance strategies and seventeen different strategic urban planning.

From 2011 a new strategic plan was assumed in cooperation with all the 17 municipalities. Briefly this new strategy plan can be summarized in:

- massive use of ITSs technologies to manages mobility and social interaction (financing granted: 65 M€);
- top priority for public transport (financing granted: 90 M€);
- no cars in the historical center, places and pedestrian areas (financing granted: 60 M€);
- development of a cycling line network, car-sharing, car-pooling, bike-sharing, electric mobility (cars, vans, scooters, bikes), the ‘Walk to school’ project, etc. (financing granted: 20 M€);
- completion and integration of tramway network (financing granted: 60 M€ + 250 M€ planned for 2016–2020);
- improvement of connectivity between city, port and airport (financing granted: 35 M€).

4 The Evolutionary Phases of Cagliari in Transport Sector

The local public transport network had important interventions aimed at improving its efficiency in terms of punctuality and travel time, thanks to the new strategic plan of 2011. This strategic plan was developed in partnership between the Municipality of Cagliari, the University of Cagliari and the CTM (Consortio Trasporti Mobilità), the Public Transport Company. Starting from 2011, many projects made the CTM as the top rated Public Transport Company in Italy and Europe, obtained also a large background in ITS technologies. The results obtained are the achievement of: (i) 30 Bus Lines; (ii) 1 Electric Bus Line; (iii) Fleet of 276 buses; (iv) Network length of 432 km. Thanks to this achievements, CTM had the newest fleet in Europe in 2014, and, from 2015, was the 2th Public Transport in Italy.

The strategic evolution of transport in Cagliari is basically developed in three phases, each of which is associated with important public funding. In particular: 1st Phase (2004–2008): Development and integration ITSs and Infomobility inside Cagliari Urban Area - Funding: 9.8 M€; 2nd Phase (2008–2014): Extension to seven suburban centers - Funding: 18.7 M€; 3rd Phase (2017–2020): Extension to all 17 centers of the Metropolitan Area - Funding: 15.0 M€. Figure 2 shows the areas involved in the three phases.
The growth of the CTM was not an isolated case. Even though Cagliari had a negative trend for the inhabitants (in 2010 the inhabitants were about 156,000, in 2016 about 154,000), it grows in terms of the mobility control and management. Figure 3 shows the comparison of the two growths. The time references show the synergies implemented by the CTM and by the municipality of Cagliari, in order to improve the mobility of the entire urban area.

![Image of the three areas](image1)

Fig. 2. Scheme of the three areas involved in the strategic plan of Cagliari

![Image of ITS systems](image2)

Fig. 3. Development of ITS systems in Cagliari [22]

The Fig. 4 compares and highlights what has been done by the Municipality of Cagliari and by the CTM in terms of ITS interventions and devices according to the two completed phases of the strategic plan.
Fig. 4. ITS interventions and devices of the two completed phases of the strategic plan [23]

Starting from 2015, the material and immaterial infrastructures of the two partners have been integrated into a single mobility management system, whose functioning and interconnections are represented in the block diagram of the telematic platform of mobility management (Fig. 5). With reference to the single block, the results obtained are as follows.

1. Remote traffic light Control Room: it is managed by Cagliari, in order to monitor all traffic lights located in 102 intersections (they were only 37 in 1996), integrated in a single remote control room.

2. Buses fleet Coordination: it is managed by CTM and allows to monitor and to control all buses fleet in real time, in order to coordinate all buses in a single remote control room.

3. Monetics and pricing: it is managed by CTM. It is the ticketing device and it allows to remotely control the on board ticket system. The intervention provided for the functional integration of the Monetics and pricing system (recharge and sale of contactless travel tickets), realised by ITS Area Vasta S.c.a.r.l. and currently in use by the CTM partner. Specifically, it is an integration and an update of the existing system, made through the purchase of 280 Pos Ingenico ICT250 model of latest generation and the purchase of new full contactless Obliterations BV500 equipped with the latest technologies (GPRS module/UMTS WIFI reader Bar Code network card TCP, RS232, 485) and fully compatible with existing bivalent validator.
(4) Communication CAGLIARI - CTM: it is an ITS system for the mobility management, called TETRA. First in Sardinia and second in Italy, after the project realized in Turin by the 5T Consortium. This integrated infomobility system was financed by the Sardinia Region under the ROP 2003–2006 funds, Axis VI Measure 6.2, for a total amount of 28.4 million Euros. The management of the project required the establishment of a consortium company between the various municipalities involved (Cagliari, Quartu S.Elena, Selargius, Elmas, Assemini, Decimomannu) and the CTM. This consortium is called “ITS Area Vasta Scarl”.

The system functioning is based on ITS use for the optimization of private traffic and for the public transport services. Two control rooms were created: the first one is the Mobility Control Room, which oversees the control of private traffic in collaboration with the Municipal Police radio room, and the second one is the AVM (Automatic Vehicle Monitoring) Room, which monitors the fleet on the road of the public transport.

The Mobility Control Room manages all the devices that allow to regulate and to control the traffic flow in the involved municipalities. Specifically, this Room manages 58 Variable Message Panels (VMP) for collective routing, 96 pivoting CCTV cameras for traffic monitoring, 102 centralized traffic light intersections with traffic lights priority. The connection of all these devices is realised through 32 km of optical fiber, added to the existing 80 km, with 14 km of secondary branches in 7 municipalities, 10 star centers. In total 80 devices are connected, and 77 are next to the connection.

The Automatic Vehicle Monitoring Room controls 264 buses in real time and 281 information points. For the users are also available App and dedicated services for real-time information to optimize the movement (SMS, IVR responder, mobility website, path calculation).

A Tetra Digital radio network was also set up to serve the seven municipal police and the CTM, with seven radio stations distributed throughout the territory, around 800 active terminals (between on board and portable) and eight fixed radio stations [25].
CTM Control Room: it is the Public Transport Company Control Room.

Cagliari Control Room: it is the Municipality Control Room.

CTM Mobility Website: in it, it is possible to find all information regarding user movement, a mobility planner, traffic information, statistics, and so on.

Parking management: it is managed by the CTM and covers all aspects, such as management and parking control, parking information and ticketing.

Air quality and pollution monitoring: it is managed by Cagliari, with environmental measurement stations, useful for air quality control and pollution monitoring.

Traffic Limited Area access control: it is managed by Cagliari and it is constituted by all devices designed to verify and to control access to all areas with limited traffic through car plate reading systems, directly connected to the municipal police station.

Variable Message Panels control: it is managed by Cagliari and it is constituted by all devices designed to inform users in real time on traffic conditions and on other news. It is directly connected to the municipal police headquarters.

Electronic screen poles.

CCTV cameras: as said above, the system manages in real time 93 CCTV traffic control cameras and 264 cameras on board for bus control.

Speed control and violations Radars: they are the devices useful to detect road infractions, such as overcoming of limited speed, crossing with red light or going through bus lane, and so on.

Therefore, the whole system allows integration, organization and process through two main control rooms, five remote control rooms, integration with police, and call center. This allows in real time to inform users (both private and public) on traffic data, on report roadblocks, on camera surveys, work in progress and on line diversions.

In this way, it is possible to control and roll 96 motorized cameras in real time, to detect interruptions and congestions, to inform on traffic level and distribution, speed, and so on. It is also possible to inform car drivers, bus drivers, pedestrian, to control and modify the traffic light plan during peak hour, and to simulate the transport network and traffic.

5 The Effects of ITS on Cagliari’s Urban Social Interactions

The improvements described represent the positive trend in the field of sustainable mobility in Cagliari. Qualitative and quantitative considerations can be made, in order to verify the effects of the implemented actions and how the citizens’ habits changed.

The qualitative considerations are based on the fruition of some redeveloped spaces and how these changes have affected the citizens’ behavior. In fact, the community started to walk, run, cycle and use the public transport (see Figs. 6, 7, 8 and 9), following an equation like this: closed to traffic = open for people.

On the other hand, the quantitative considerations are based on the variation of some indicators, before/after the interventions and the tangible and intangible infrastructures realized. The benefits obtained were distinguished in benefits for private traffic, benefits for public transport, benefits for safety, and benefits for users. These are listed below.
Fig. 6. Viale Poetto before 2015 and today

Fig. 7. Corso vittorio emanuele before 2015 and today

Fig. 8. Via Roma. Waterfront today and the future light rail metro system with its pedestrian area (22.5 M€, project under construction)
Fig. 9. Other areas of Cagliari are today became friendly for pedestrians

(a) Benefit for private traffic.

An analysis before and after 2015 was made on all municipality of Cagliari and on 5 main streets of Cagliari. The first analysis, conducted for the period 2011–2015 on the entire transport network of Cagliari, shows (i) a 4.5% increase in the number of public transport passengers, (ii) a reduction in inter-municipal private traffic of 8.2% (from 183,000 to 168,000), and (iii) a reduction in intra-municipal private traffic of 9.1% with an average distance of 25 km/day. In the same period (2011–2015), the general reduction of transport costs is estimated 30 M€/year, with a fuel cost saving of 1.7 M€/year. Regarding the environmental pollution, authors obtained for the same period a reduction of Hydrocarbons (−7.6%/year), of Particle pollution PM10 (−10.4%/year) and of Nitrogen oxides (−6.8%/year).

The second analysis (the one made on 5 main roads) shows the benefits on private car traffic. Significant variables for the life of a city have measured and the obtained results are in Table 1 and Fig. 10.

<table>
<thead>
<tr>
<th>Name of roads</th>
<th>Viale Poetto</th>
<th>Via Sonnino</th>
<th>Via Dante</th>
<th>Via Cadello</th>
<th>Viale Trieste</th>
</tr>
</thead>
<tbody>
<tr>
<td>Travel time reduction (%)</td>
<td>14.8%</td>
<td>19.7%</td>
<td>44.6%</td>
<td>11.5%</td>
<td>11.3%</td>
</tr>
</tbody>
</table>
(b) Benefit for public traffic.

The interventions on the local public transport network and the digital infrastructures allowed an increase in passengers flows of 23% in 5 years (from 2010 to 2015). This was also possible thanks to the predisposition of friendly applications and devices, that attracted new users, especially among the younger ones. Nowadays, 2 apps for smartphones, real time information bus passing, information about bus stop, delay, ticketing are present. In addition, social networks have also used to improve the offer from 2010.

(c) Benefit for safety.

Traffic safety levels also improved thanks to the ITS and to public actions. In fact, the number of accidents has greatly decreased in recent years. This data was obtained from the accident database which has collected about 30,000 accidents and their characteristics in the last 10 years. Figure 11 shows how the accident rate has decreased by 32% in the period from 2010 to 2017 and Fig. 12 underlines traffic accidents costs in Cagliari.

Fig. 10. Commercial speed before and after 2015

Fig. 11. Traffic accidents trend in Cagliari (From 2006 to 2017)
Fig. 12. Traffic accidents costs in Cagliari (From 2008 to 2017)

(d) Benefit for users.

The AVL (Automatic Vehicle Location) system produced a marked improvement in terms of punctuality and information on the service and this can be measured through customer satisfaction in terms of perceived quality, punctuality of the system, information received and travel time (Fig. 13).

Fig. 13. Customer satisfaction [26]
6 Conclusions

All efforts made by the administration of Cagliari have made possible to achieve important goals and improvements. They also made it possible to state how such ITS systems, combined with good urban policies aimed at sustainable mobility, allow residents to enjoy high quality of life and to improve the quality of their environment, and to appreciate walking, biking or taking public transportation, in order to go to the places they most frequently need to go every day, such as work, schools, grocery stores, shopping malls, parks, recreational areas and health facilities.

The goals described have also enabled the municipality of Cagliari to achieve important international and national awards. Among the many, in the past 5 years, authors highlight for example: its achievement of the top ten Italian rating for sustainable mobility; Cagliari is the 2nd best public transport in Italy, after Milan; Cagliari is also the 2nd largest pedestrian areas after Venice, and Cagliari won the first prize as best transit management in Europe. Cagliari has also a 30% reduction of car accident and the urban quality grow radically.

In addition, in few years the public transport company (CTM company) reaches the top quality in Italy, with the newest fleet in Europe and a constantly growing trend. In 2015 CTM starts with a first Italian full-pure-electric bus transport. Next to this, not of secondary importance, authors highlight the importance of the implementation of infrastructure interventions on urban public spaces with invested massive resources to restore squares, pedestrian and biking surfaces, improving public transport, car sharing, and mainly ITS technology.

Without these interventions, many of the results obtained would not have achieved demonstrating that the quality of the space contributes to the improvement of the quality of life, but that this must be accompanied by urban policies aimed at reducing vehicular traffic and therefore to strong policies on alternative and sustainable mobility.

The obtained and discussed results have also a strong national recognition regarding sustainable mobility. This can be found in the Eleventh Report of Euromobility on Sustainable Mobility in the main 50 Italian cities, carried out under the patronage of the Italian Ministry of the Environment.

Cagliari was in 38th place in 2011: the goal was to gain positions with the interventions scheduled until 2018. In the 2017 Report Cagliari climbed to twelfth place. The excellent position in the ranking is the consequence of the improvement of road safety, of the increase in demand for local public transport, of positive data on air quality, of the activities for the preparation of the Sustainable Urban Mobility Plan (SUMP).

Beyond the ranking, the confirmed objective is to further improve sustainable mobility in the city. In this sense, authors emphasize that the actions implemented in 2017 will be considered by Euromobility analysts only in the next 2018 Report. Among these: the increase in car sharing positions and the inclusion of electric cars in the fleet, the activation of the new bike sharing service, the funding obtained with the project presented under the national experimental program of sustainable mobility home-school and home-work, the allocation of incentives for the purchase of ecological means for taxis.
Scheduled in the coming months, then, the increase in pedestrian areas, the increase in the bike sharing and car sharing service with the inclusion of vehicles in “free flow” mode, the increase in kilometers of cycle paths currently being planned with the resources available on the 2014–2020 Metro PON, the assignment of the construction of a city network of charging stations for electric vehicles, the increase of road safety with the installation of devices such as raised pedestrian crossings and activation of the “30 Zones”.

Acknowledgments. The authors thank for data availability the Municipality of Cagliari, the CTM Company, the Mobility Control Room of Cagliari, and the municipal police of Cagliari.

This study was supported by the MIUR (Ministry of Education, Universities and Research [Italy]) through 2 projects: (1) Governing the smart city: a governance-centred approach to Smart urbanism - GHOST (Project code: RBSI14FDPF; CUP Code: F22I15000070008), financed with the SIR (Scientific Independence of Young Researchers) programme. (2) “CAGLIARI2020” (Project code: PON04a2_00381). We authorize the MIUR to reproduce and distribute reprints for Governmental purposes, notwithstanding any copyright notations thereon. Any opinions, findings and conclusions or recommendations expressed in this material are those of the authors, and do not necessarily reflect the views of the MIUR.

This study was also supported by the project “Healthy Cities and Smart Territories”, founded by the Foundation of Sardinia and Autonomous Region of Sardinia (Fondazione di Sardegna – Convenzione triennale tra la Fondazione di Sardegna e gli Atenei Sardi Regione Sardegna 2016).

References

22. Annual Report of CTM Company (Figure 3 was provided to authors thanks to the kind authorization of the CTM Company)

23. Figure 4 was provided to authors thanks to the kind authorization of the CTM Company

26. Data were provided to authors thanks to the kind authorization of the CTM Company