Exciton–Exciton Interaction and Optical Gain in Colloidal CdSe/CdS Dot/Rod Nanocrystals

By Michele Saba, Stefan Minniberger, Francesco Quochi, Juergen Roither, Marco Marceddu, Agnieszka Gocalinska, Maksym V. Kovalenko, Dmitri V. Talapin, Wolfgang Heiss, Andrea Mura, and Giovanni Bongiovanni

Semiconductor colloidal nanocrystals have been proposed as optically-active media for solution-processable optoelectronic devices, because they combine inexpensive, wet-chemistry synthesis with high photoluminescence quantum yield, large oscillator strength and size tunability of optical transitions.[1–4] Key to the success of nanocrystal-based devices is the possibility to design and consistently synthesize nanocrystals with desired properties. Size uniformity can be usually controlled within less than 5% uncertainty; surface capping, passivation and core/shell structures can lead to photoluminescence quantum yields exceeding 50%, optical gain and lasing.[5]

A new frontier in nanocrystal design has appeared with heterostructures allowing spatial separation of electron and hole wavefunctions, like in type-II CdSe/CdTe core/shell nanocrystals, through staggered conduction and valence band offsets.[6,7] Charge separation inside nanocrystals is useful in photodetector and photovoltaic devices, quantum optics and low-threshold lasers. Exciton nonlinearities also depend on the degree of separation of electron and hole wavefunction. In type-II heterostructures, it has been demonstrated that charge separation can lead to a large repulsive exciton–exciton interaction. The resulting blueshift of the exciton-to-biexciton transition suppresses to a large extent resonant re-absorption of stimulated emission from single-exciton states, allowing net optical gain and lasing at excitations corresponding to less than one electron-hole pair per nanocrystal. In this regime, losses inherent to multi-exciton recombinations are avoided, resulting in optical gain with a much longer lifetime, an essential step towards the achievement of single exciton regime by several orders of magnitude with respect to spherical, type-II core/shell nanocrystals.

In this work we set to determine exciton–exciton interaction and optical gain in CdSe/CdS dot/rod nanocrystals.[8–11] We examined 4 different batches of nanocrystals, with length along the rod axis ranging from around 30 nm to over 50 nm, as visible in the TEM images in Figure 1b. The main morphology difference between batches could be found on the girth in the vicinity of the CdSe dots, as samples #1 and #2 showed a pronounced CdS bump, while in samples #3 and #4 the rod shape was regular, without bumps. Linear optical properties were found to be similar for all 4 samples batches, as expected from similar nanocrystal shapes and compositions. The optical absorption spectra were all characterized by very large molar extinction factors (in excess of 10^7 mol$^{-1}$ cm$^{-1}$ around 400 nm in wavelength) and were dominated by CdS features, with only shoulders around 600 nm signaling the presence of CdSe, consistent with the fact that CdSe occupied only a few percent of the nanocrystal volume (Fig. 1d). On the contrary, continuous wave (cw) luminescence was emitted almost exclusively around the CdS bandgap energy and the quantum yield was higher than 70% at all optical excitation energies, meaning that most photogenerated excitations relaxed to the lowest energy allowed by the CdS/CdS heterostructure. A very narrow-size dispersion of the nanocrystal samples reflected into 30–40 nm FWHM for photoluminescence. Only in sample #3 we found an asymmetric photoluminescence lineshape, probably due to contributions from spurious species.

To access photoluminescence dynamics, the emission was time-resolved with a streak camera, after exciting solutions of...
nanocrystals dispersed in toluene with sub-picosecond laser pulses. The excitation level, or average number of excitons (N) created in each nanocrystal, was calculated multiplying the laser photon density Φ with the absorption cross-section σ for the nanocrystals at the laser wavelength ($\sigma = 5.4 \times 10^{-16} \text{ cm}^2$ at 394 nm). The spectrogram in Figure 2a refers to sample #1, was taken at very low excitation levels and showed that the emission from the CdSe dot decayed with a ~ 20 ns single exponential time, while a very weak trace of emission from the CdS rod was visible only at early times after excitation and decayed within the time resolution. The long decay of dot emission in such CdSe/CdS heterostructures, compared to bare CdSe or CdSe/ZnS nanocrystals of similar size, has been linked to the reduced electron/hole overlap and consequent reduction in oscillator strength for the excitonic transition.

The spectrogram evolved significantly for high excitation levels (Fig. 2b), when each nanocrystal was injected with more than one exciton on average. At early times after excitation and for all considered nanocrystals, the emission from the rod became comparable in intensity to the emission from the dot. At high excitation densities and time 0, additional optical emission appeared at energies higher than exciton transitions, but still much lower than the CdS rod gap, which we attributed to higher excited, multie exciton states in the CdSe core. The large broadening of the peak might be an indication of further delocalization of conduction electrons across the rod for such excited states. Emission at the exciton energy in CdSe dots became much faster at higher excitation fluences, a clear indication of multie exciton recombination. The lifetime of bie exciton states was estimated to be ~ 300 ps by fitting photoluminescence time decays for various excitation intensities with a double exponential (very similar dynamics were measured in all samples, see Supporting Information). However the decay time for the long excitonic component depended on the excitation power, becoming faster for higher excitation levels (see Supporting Information).

Differences among various nanocrystals were apparent in the spectral evolution of the exciton peak with increasing excitation fluence. Figure 3 summarizes the comparison of spectra measured immediately after the arrival of the excitation pulse in the linear and multie exciton regimes (a gate window of 50 ps was selected). A shift appeared in the peak wavelength for the dot emission, which measured the exciton–exciton interaction energy. The observed shift varied from 31 meV to the blue (in sample #2), to 20 meV to the blue (sample #1), to 4.5 meV to the red (samples #3), to 3.6 meV to the red (sample #4), indicating that exciton–exciton interaction could be tuned from attractive (corresponding to a redshift of bie exciton transitions with respect to exciton ones, as in conventional core/shell nanocrystals) to repulsive (bie exciton is blueshifted with respect to exciton) with minor nanocrystal shape modifications. Nanocrystals with increased girth around the CdSe dot showed exciton–exciton repulsion, which could be attributed to larger spatial separation between electrons and holes, as electrons had a thicker CdS shell to spread into. On the other hand, in nanocrystals without the bump around the CdSe core electrons found a very thin CdS shell in all directions except the rod long axis, so that spreading outside the dot of electron wavefunctions was reduced, resulting in a weak exciton–exciton attraction.

A complementary tracking of exciton dynamics was provided by a transient absorption experiment, a technique sensitive to bleaching from single carriers (a single electron or hole affects absorption), while photoluminescence gave information only on the joint population of electrons and holes. Figure 4a shows the differential transmission spectrum at 1 ps delay between pump and probe pulses in sample #1: it appeared that even at excitation intensities creating less than one exciton per nanocrystal, a differential transmission signal was present both at the wavelength of the dot emission and that of the rod emission, a feature common to all measured nanocrystals. The spectrogram (Fig. 3b) and the differential transmission decay curves (Fig. 3d) showed that both rod and dot signals had similar decay rates, with typical times longer than our 0.5 ns observation window. Given that, under the same conditions, very little luminescence was emitted at the rod transition energy, the observation of bleaching for probe wavelengths below 500 nm was consistent with the electrons being significantly delocalized over the rod and therefore affecting also CdS transitions. A blow-up of the differential signal dynamics just after the arrival of the excitation...
pulse (inset in Fig. 3c) hinted at a picosecond rise time for the dot signal, which could be related to the time needed to capture carriers from the rod into the dot.[20]

The ratio of the differential transmission signal at the rod and dot transition wavelengths has been shown to provide a measure of charge separation in dot/rod nanocrystals,[20] as the rod signal grows with growing penetration of electron wavefunctions inside the rod shell. In the four samples we measured, the ratio of dot-to-rod differential transmission signals varied and turned out to be correlated to the exciton binding energy: the samples with repulsive exciton–exciton interaction showed a larger rod signal (13 and 7 times larger than the dot signal, respectively, for samples #1 and #2) with respect to the samples with attractive interaction (for both samples #3 and #4 the ratio was around 4). Such observation was consistent with the interpretation we gave of exciton–exciton interaction and demonstrated once more that electron confinement in such asymmetric nanocrystals critically depends on shape details around the CdSe dot. Our finding may help reconciling conflicting conclusions reported on electron localization from different experiments on CdSe/CdS dot/rod nanocrystals.[20,21]

At higher excitation levels, the differential transmission signal at the rod energy increased much more than the one at the dot energy, similarly to what happened for the photoluminescence signal. In the nonlinear regime, the decays of the dot and rod signals departed significantly from each other: the rod signal decay became much faster and nonexponential, an apparent consequence of multiparticle Auger effects.

A detailed comparison of excitation power dependence of both luminescence and differential absorption allowed quantitative estimates of the number of excitons contained in nanocrystals. The peak value of the luminescence signal from streak images (both for dot and rod signals and for a reference sample of commercial core/shell CdSe/ZnS nanocrystals emitting at 620 nm) has been plotted as a function of the average number N_{hi} of excitons injected in the nanocrystal (Fig. 4e). When $N_{\text{hi}} / C_2^8 1$, the peak luminescence signal was proportional to N_{hi} (linear regime). Assuming that luminescence from the dot was the only relaxation channel for injected excitons in the linear regime, the slope for the dot-luminescence signal in the linear regime was normalized to 1, so that the photoluminescence intensity value around 2 obtained at saturation measured the maximum occupation in the lowest exciton state (the peak value is obtained integrating over exciton and biexciton emission), consistent with the double degeneracy of the conduction band. A very similar photoluminescence saturation was observed for commercial core/shell CdSe/ZnS round nanocrystals. [22] The rod photoluminescence signal on the contrary kept growing with the excitation power (even superlinearly in a small regime), meaning that many excitons could be stored inside each rod. The red line in Figure 4e is not a fit to the data, but a theoretical prediction for the
The statistical error on the signal saturated at a value above 1 and optical gain occurred for the exciton transition in commercial core/shell CdSe dots (empty red dots). The red line is the Poisson correction as explained in the text. f) Differential transmission peak signal at rod and dot wavelengths as a function of the pump-probe delay; the tilt of the transmission spectrogram (spectrum as a function of the pump-probe delay). The evolution of the peak value of the differential absorption signal from the dot, we divided the signal from the rod kept increasing. To calibrate the magnitude of the differential signal from the dot, we divided the differential absorption Δn by the linear absorption n at the corresponding wavelength, so that 0 < Δn/n < 1 meant that bleaching of the transition occurred, while Δn/n > 1 was the condition for optical gain. The differential absorption for the dot signal saturated at a value above 1 and optical gain occurred for ⟨N⟩ close to 1. The statistical error on Δn/n was however of the order of 10%, owing to the uncertainty on the small values of both Δn and n at the dot transition. Thanks to the very high absorption cross-section of dot/rod nanocrystals, the gain threshold was reached for an extremely low pump fluence, ~10 μJ cm⁻², more than 100 times lower than the gain threshold reported for type-II nanocrystals.[7] With such a low threshold comes also a low absolute value for optical gain itself, so that in a working laser device based on dot/rod nanocrystals special care will have to be taken to limit optical losses.

A simple theoretical prediction for differential absorption in the limit that the biexciton repulsion energy Δ is larger than the exciton emission linewidth Γ, is that: Δn/n = 2(1 - e⁻ᵐán) (red line in Fig. 4f); in our case, however, the benefit of exciton repulsion was limited by the fact that Γ was about three times larger than Δ, so that the optical gain could be therefore predicted to occur for ⟨N⟩ = 2 1 - e⁻ᵐán ≈ 0.95.[7] An even lower gain threshold could be achieved by further optimization of nanocrystal design: smaller CdSe cores, for example, or thicker rod shells surrounding them, may lead to greater charge separation and larger biexciton repulsion. As an added benefit, the exciton lifetime τX at gain threshold would increase from 1 ns (value we measured for ⟨N⟩ ~ 1) towards 20 ns (the value measured in the linear regime for ⟨N⟩ ~ 1). The corresponding optical pumping density Pth needed to maintain inversion in cw conditions, is given by Pth = ⟨N⟩τX/τ by the antenna effect of the rod contribute to keep Pth low; its value would therefore jump from approximately 10 kW cm⁻² (for τX = 1 ns and σ = 10⁻¹⁵ cm²) down to 500 W cm⁻² (for τX = 20 ns), a value comparable with indirect optical pumping with a blue diode, as demonstrated for polymer lasers.[23]

"In conclusion, ultrafast nonlinear spectroscopy revealed that exciton–exciton interaction in CdSe/CdS dot/rod nanocrystals can be sensitively tuned, from attractive to repulsive, with minor modifications in the nanocrystal shape. Exciton–exciton repulsion is a very beneficial feature to achieve lasing under cw or quasi-cw pumping, especially when coupled with the antenna effect provided by the CdS rod and the large photoluminescence quantum yield. Present experimental results validate the use of CdSe/CdS dot/rod nanocrystals as materials of choice to combine ultra-low gain threshold with long lifetime gain. The prospects of CdSe/CdS colloidal heterostructures are further enhanced by the rich variety of structure sizes and shapes that can be synthesized,[24] including smaller CdSe dots that could enhance the repulsive excitonic interaction and multibranchCdS arms that attach to zincblende-phase CdSe dots."
Experimental

Nanocrystal Preparation: CdSe/CdS dot-rod samples were grown and purified according to previously published protocol (Ref [9]). Special care was taken to remove traces of tetrapods by means of size-selective precipitation. The smoothness of the rods was varied by using different amounts of propylenephosphonic acid (PPA) and by the growth time. For example, Sample #4, which had the smoothest surface and smallest width of all, was grown using 25 mg of PPA and growth time of 20 min. More bumpy morphologies such as Samples 1 and 2 were obtained by using lower concentration of PPA and extending the growth time to 40 min.

An estimate of nanocrystal sizes from TEM images gave the following parameters: Sample 1: diameter 5 nm, length 50–60 nm, original CdSe seed diameter 4.1 nm; Sample 2: diameter 5.5 nm, length 50–60 nm, original CdSe seed diameter 3.1 nm; Sample 3: diameter 5 nm, length 20–30 nm, original CdSe seed diameter 5.1 nm; Sample 4: diameter 4.5 nm, length 40–50 nm, original CdSe seed diameter 3.5 nm.

Time-Resolved Photoluminescence: Optical excitation was provided by 150 fs pulses from a frequency-doubled Titanium:sapphire regenerative amplifier (Quantrox Integra C) with 3.1 eV photon energy and 1 kHz repetition rate. Laser pulses were focused down to a 130-μm spot on the nanocrystal solution. Photoluminescence was measured with a C5680 Hamamatsu streak camera. The temporal resolution in the configuration we employed was ~100 ps. Decay traces were extracted from streak-camera spectrograms by integrating over a ~50-nm-wide spectral window that included both exciton and biexciton emission.

Transient Absorption: The absorption spectrum was probed with white-light continuum 150 fs long laser pulses, 450 nm to 700 nm in wavelength, generated by focusing the output of the regenerative amplifier (Quantrox Integra), attenuated to approximately 1 μJ energy per pulse, on a 1-mm-thick sapphire plate. Probe pulses had a variable delay with respect to pump pulses (394-nm wavelength, 150 fs long, same as laser pulses from a frequency-doubled Titanium:sapphire regenerative amplifier (Quantronix Integra C) with 3.1 eV photon energy and 1 kHz repetition rate. Laser pulses were focused down to a 130-μm spot on the nanocrystal solution. Photoluminescence was measured with a C5680 Hamamatsu streak camera. The temporal resolution in the configuration we employed was ~100 ps. Decay traces were extracted from streak-camera spectrograms by integrating over a ~50-nm-wide spectral window that included both exciton and biexciton emission.

Acknowledgements

Funding for this work was partly provided by the grant “Rientro dei cervelli” from the Italian MIUR, INFM-CNR Seed project for young researchers, FIRB-MIUR project Synergy-FIRB88NE0357XZ, European Commission through the Human Potential Programs (RTN Nanomatch, Contract No. MRTN-CT-2006-035884), Austrian Nano-Initiative (project NSI), Austrian Science Fund FWF (project START Y179), and NSF MRSEC Program under Award Number DMR-0213745. Supporting Information is available online from Wiley InterScience or from the author.

Received: May 5, 2009
Published online: August 31, 2009