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The variety BL of BL-algebras is the algebraic counterpart of BL (Hájek’s
Basic Fuzzy Logic [4]). A BL-algebra is a divisible and commutative residuated
lattice which is also prelinear. Among others, the varieties of MV-algebras and
product algebras are well-known subvarieties of BL. Due to the prelinerity
property, the fundamental structures in the study of BL are its totally ordered
members (BL-chains). Focused on BL-chains, it was proved that they can be
completely described as an ordinal sum (of simpler structures).

Theorem 1 (Subdirect representation theorem. See [4]). Each BL-algebra is a
subdirect product of BL-chains.

Theorem 2 (Decomposition theorem. See [1]). Each non-trivial BL-chain
admits (up to isomorphism) a unique decomposition into an ordinal sum of
non-trivial totally ordered Wajsberg hoops.

Since every BL-algebra can be embedded into the direct product of BL-chains
and every BL-chain can be decomposed as an ordinal sum, Jipsen and Montagna
proposed in [6] a construction called poset product as a sort of generalization of
direct product and ordinal sum. Briefly, the poset product is a subset of a direct
product which is defined by using a partial order over the index set. Specifically,

Definition 3. Let P = 〈P,≤〉 be a poset and let {Ap : p ∈ P} be a collection of
BL-algebras sharing the same neutral element 1 and the same minimum element
0. The poset product

⊗
p∈P Ap is the residuated lattice A = 〈A, ·,→,∨,∧,⊥,>〉

defined as follows:

1. The domain of A is the set of all maps x belonging to
∏

p∈P Ap such that
for all p ∈ P , if xp 6= 1, then xq = 0 for all q > p.

2. ⊥ ≡ 0 (the constant map 0) and > ≡ 1.

3. The monoid operation and the lattice operations are defined pointwise.

4. The residual is as follows:

(x→A y)p =
{

xp →Ap yp if xq ≤q yq for all q < p;
0 otherwise.

∗Joint work with Manuela Busaniche.
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In [3], based on the results of [5, 6, 7], it is shown that every BL-algebra can
be thought as a subalgebra of the poset product of a collection of BL-chains.

Theorem 4 (See [3]). Every BL-algebra can be embedded into a poset product
of a family of MV-chains and product chains indexed by a forest.

Hence it is natural to wonder if a BL-algebra is isomorphic to a poset product.
Although finite BL-algebras are indeed isomorphic to a poset product of MV-
chains (details in [6]), in general the answer is negative (even for BL-chains, as
shown in [2]).

Our work is framed in the study of BL-algebras that are isomorphic to a poset
product of BL-chains. The aim of this talk is to examine some features of this
construction and consider the restriction referred above. Then we will introduce
the notions of indecomposable and representable BL-algebra in the sense of poset
product. Our main result provides sufficient conditions for BL-algebras so that
they admit a representation as a poset product. The proof, which is constructive,
will be outlined.

Theorem 5. Let A be a BL-algebra. If its subset J(A) of idempotent and join
irreducible elements is a well partial order (with the inherited order) such that
each i ∈ J(A) induces a prime filter in A, and every a ∈ A has a maximum
idempotent element below it, then A is isomorphic to the poset product of a
collection of indecomposable BL-chains.
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