A poset product-representable family of BL-algebras*

Conrado Gomez

Instituto de Matemática Aplicada del Litoral, UNL, CONICET, FIQ. Santa Fe, Argentina. cgomez@santafe-conicet.gov.ar

The variety \mathcal{BL} of BL-algebras is the algebraic counterpart of BL (Hájek's **B**asic Fuzzy **L**ogic [4]). A BL-algebra is a divisible and commutative residuated lattice which is also prelinear. Among others, the varieties of MV-algebras and product algebras are well-known subvarieties of \mathcal{BL} . Due to the prelinerity property, the fundamental structures in the study of \mathcal{BL} are its totally ordered members (BL-chains). Focused on BL-chains, it was proved that they can be completely described as an ordinal sum (of simpler structures).

Theorem 1 (Subdirect representation theorem. See [4]). Each BL-algebra is a subdirect product of BL-chains.

Theorem 2 (Decomposition theorem. See [1]). Each non-trivial BL-chain admits (up to isomorphism) a unique decomposition into an ordinal sum of non-trivial totally ordered Wajsberg hoops.

Since every BL-algebra can be embedded into the direct product of BL-chains and every BL-chain can be decomposed as an ordinal sum, Jipsen and Montagna proposed in [6] a construction called poset product as a sort of generalization of direct product and ordinal sum. Briefly, the poset product is a subset of a direct product which is defined by using a partial order over the index set. Specifically,

Definition 3. Let $P = \langle P, \leq \rangle$ be a poset and let $\{\mathbf{A}_p : p \in P\}$ be a collection of BL-algebras sharing the same neutral element 1 and the same minimum element 0. The poset product $\bigotimes_{p \in P} \mathbf{A}_p$ is the residuated lattice $\mathbf{A} = \langle A, \cdot, \rightarrow, \vee, \wedge, \bot, \top \rangle$ defined as follows:

- 1. The domain of **A** is the set of all maps x belonging to $\prod_{p \in P} A_p$ such that for all $p \in P$, if $x_p \neq 1$, then $x_q = 0$ for all q > p.
- 2. $\perp \equiv 0$ (the constant map 0) and $\top \equiv 1$.
- 3. The monoid operation and the lattice operations are defined pointwise.
- 4. The residual is as follows:

$$(x \to_{\mathbf{A}} y)_p = \begin{cases} x_p \to_{\mathbf{A}_p} y_p & \text{if } x_q \leq_q y_q \text{ for all } q < p; \\ 0 & \text{otherwise.} \end{cases}$$

^{*}Joint work with Manuela Busaniche

In [3], based on the results of [5, 6, 7], it is shown that every BL-algebra can be thought as a subalgebra of the poset product of a collection of BL-chains.

Theorem 4 (See [3]). Every BL-algebra can be embedded into a poset product of a family of MV-chains and product chains indexed by a forest.

Hence it is natural to wonder if a BL-algebra is isomorphic to a poset product. Although finite BL-algebras are indeed isomorphic to a poset product of MV-chains (details in [6]), in general the answer is negative (even for BL-chains, as shown in [2]).

Our work is framed in the study of BL-algebras that are isomorphic to a poset product of BL-chains. The aim of this talk is to examine some features of this construction and consider the restriction referred above. Then we will introduce the notions of *indecomposable* and *representable* BL-algebra in the sense of poset product. Our main result provides sufficient conditions for BL-algebras so that they admit a representation as a poset product. The proof, which is constructive, will be outlined.

Theorem 5. Let \mathbf{A} be a BL-algebra. If its subset $J(\mathbf{A})$ of idempotent and join irreducible elements is a well partial order (with the inherited order) such that each $i \in J(\mathbf{A})$ induces a prime filter in \mathbf{A} , and every $a \in A$ has a maximum idempotent element below it, then \mathbf{A} is isomorphic to the poset product of a collection of indecomposable BL-chains.

References

- [1] P. Aglianò and F. Montagna. Varieties of BL-algebras I: general properties. Journal of Pure and Applied Algebra, 181:105–129, 2003.
- [2] M. Busaniche and C. Gomez. Poset product and BL-chains. Studia Logica, 2017. https://doi.org/10.1007/s11225-017-9764-6.
- [3] M. Busaniche and F. Montagna. Hájek's logic BL and BL-algebras. In Handbook of Mathematical Fuzzy Logic, volume 1 of Studies in Logic, Mathematical Logic and Foundations, chapter V, pages 355–447. College Publications, London, 2011.
- [4] P. Hájek. Metamathematics of Fuzzy Logic. Trends in Logic, Volume 4. Kluwer Academic Publishers. 1998.
- [5] P. Jipsen, Generalizations of Boolean products for lattice-ordered algebras. *Annals of Pure and Applied Logic*, 161:228–234, 2009.
- [6] P. Jipsen and F. Montagna. The Blok-Ferreirim theorem for normal GBL-algebras and its applications. *Algebra Universalis*, 60:381–404, 2009.
- [7] P. Jipsen and F. Montagna. Embedding theorems for classes of GBL-algebras. Journal of Pure and Applied Algebra, 214:1559–1575, 2010.