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Abstract—To deal with the increasing complexity of distribu-
tion networks that are experiencing important changes, due to
the widespread installation of Distributed Generation and the
expected penetration of new energy resources, modern control
applications must rely on an accurate picture of the grid status,
given by the Distribution System State Estimator (DSSE). DSSE
is required to integrate all the available information on loads and
generators power exchanges (pseudomeasurements) with the real-
time measurements available from the field. In most cases the
statistical behavior of the measured and pseudomeasured quanti-
ties cannot be approximated by a Gaussian distribution. For this
reason, it is necessary to design estimators that are able to use
measurements and forecast data on power flows that can show a
non-Gaussian behavior. In this paper, a DSSE algorithm based
on Bayes’s rule, conceived to perfectly match the uncertainty
description of the available input information, is presented. The
method is able to correctly handle the measurement uncertainty
of conventional and synchronized measurements and to include
possible correlation existing between the pseudomeasurements.
Its applicability to medium voltage distribution networks and its
advantages, in terms of accuracy of both estimated quantities
and uncertainty intervals, is demonstrated.

Index Terms—Distribution System State Estimation, Bayesian
Theory, Non-Gaussian Uncertainties, Measurement Correlation,
Active Distribution Grids.

I. INTRODUCTION

In the smart grid scenario, the distribution grid will be the

level of the electric system interested by the most important

changes [1]. The massive installation of Distributed Generation

(DG) already overturned the traditional view of distribution

grids as simple passive networks, transforming them in active

grids with bi-directional power flows. In future, the expected

diffusion of electric vehicles, the use of storage devices and

the increasing presence of power electronics will lead the

distribution network to become a highly complex system [2].

To deal with such a high complexity, new control function-

alities need to be developed. For an efficient management of
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the distribution system, these applications require an accurate

monitoring of the operating conditions, which is provided by

Distribution System State Estimation (DSSE) tools.

In spite of the significant efforts made in recent years to de-

velop DSSE algorithms tailored to the specific characteristics

of distribution grids [3]–[7], many challenges still prevent an

easy deployment of DSSE on the field [8]. A comprehensive

review of DSSE methodologies is available in [9].

One of the main issues is the lack of redundant measure-

ments, which is a pre-requisite for the accurate and reliable

operation of State Estimation (SE) algorithms [10]. The lack

of a sufficient number of measurements is usually tackled

by introducing the so-called pseudomeasurements, typically

represented by forecast measurements about the power con-

sumption or injection at the different nodes of the grid.

Despite being essential to reach the observability of the dis-

tribution network, pseudomeasurements bring some limitations

to the accuracy performance achievable with the DSSE results,

mainly for two reasons:

• since they are forecast measurements based on statistical

and/or historical data, the confidence level on this infor-

mation is generally low, and consequently they need to be

considered with a very low accuracy; this is automatically

reflected on the accuracy of the DSSE output [11];

• because of the particular behaviour of loads and DG (or

their combination in case of prosumers), the probability

distribution around the expected value assumed as pseu-

domeasurement can differ significantly from the Gaussian

distribution commonly adopted in classic Weighted Least

Squares (WLS) estimators; any approximation used to

represent this uncertainty in the DSSE model translates

in an error that propagates to the final DSSE results.

The pseudomeasurement characteristics have been analysed

in different studies during last years. In [12], the impact of

the smart metering data aggregation restriction on DSSE is

considered. In [13] a procedure based on an Artificial Neural

Network (ANN) has been proposed to extract pseudomeasure-

ments and to enhance their reliability for DSSE purposes. An

ANN has been also used in [14] to process the last SE results

and to generate the pseudomeasurements accordingly. Other

papers focused instead on the modelling of the distribution. In

[15], different models, namely the normal, the log-normal and

the beta distribution, have been tested to verify their suitability

to represent load pseudomeasurements. The beta distribution

was suggested as the best one, due to the possibility of tuning

the parameters for obtaining the desired shape and skewness.
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Beta distribution has been also proposed and used in [16]

to represent the uncertainty distribution of residential loads.

Another interesting option proposed as an alternative is the

use of Gaussian Mixture Models (GMM, see for example

[17] and [18]), where the overall uncertainty distribution is

obtained by means of a weighted sum of different Gaussian

curves. This solution is appealing above all when bimodal

uncertainty distributions exist, as it could be the case when

nodes with prosumers or the combination of loads and DG

are present. In [19], a framework is proposed to deal with

non-Gaussian measurements when the mathematical model of

the distribution is explicitly known, by translating them into an

equivalent normal space by means of suitable transformations.

All the above mentioned studies indicate that the uncertainty

distribution of the pseudomeasurements can vary significantly,

depending on the characteristics of the loads or DG connected

downstream the node and the particular scenario taken into

account. For this reason, to maximize the DSSE performance,

it is important to design flexible state estimators able to deal

with any kind of uncertainty distribution. A first attempt to

design a state estimator able to deal with different statistical

distributions, based on the Bayesian theory, has been discussed

in [20]. While the Bayes’ rule has been applied in some fields

related to power systems, like in topology identification [21],

its application as a paradigm for state estimation is a novelty

proposed by the authors. In [20], a preliminary investigation

was carried out to gain a first idea on the potential benefits

of a Bayesian approach in a state estimation process, but

several simplifying assumptions were present. First of all, all

the pseudomeasurements were assumed to be not correlated

between each other. Then, only Gaussian distributions were as-

sumed for the real measurements taken from the field. Finally,

only traditional power, voltage and current measurements were

considered. The estimator was tested on a small LV grid to

show the possible advantages it offers with respect to classical

solutions based on a WLS approach.

Starting from the encouraging outcomes of [20], in this

paper, the technique has been improved and generalized

by removing all the above simplifications and by keeping

into account additional important aspects of the statistical

description of measurements and pseudomeasurements. In

particular, the refined technique presented in this paper also

allows including the possible correlations existing between

pseudomeasurements, like those between active and reactive

power at a given node, and considers a more general model of

the quantities provided by the measurement instruments, which

can reflect any generic uncertainty distribution. With respect

to previous literature, the proposal here presented thus allows

dealing with measurements and prior information having any

uncertainty distribution, also including empirical distributions

that cannot be classified under a specific non-Gaussian model.

In addition, the estimator is further refined to include synchro-

nized measurements from Phasor Measurement Units (PMUs).

The newly designed estimator is then tested on a sample MV

grid, using statistical models gathered from real data to define

the pseudomeasurements, with different types of loads and

generators and different power profiles. The final outcome of

this paper is thus the proposal of a general paradigm for DSSE

that is applicable to both MV and LV networks and allows

including even complex statistical models of measurements,

loads and generators, overcoming the main issues of classic

simplified or model-based approaches.

In the following, the paper is structured as follows. In Sec-

tion II, the mathematical model used to design the Bayesian

estimator is presented. Section III describes the details about

the considered power profiles, showing in particular the sta-

tistical distributions achieved from the gathered real data. In

Section IV the proposed Bayesian DSSE is tested and the

obtained results are discussed. Finally, Section V summarizes

the characteristics and peculiarities of the proposed approach

and concludes the paper.

II. PROPOSED DSSE BAYESIAN ESTIMATOR

The proposed estimator exploits the classical DSSE mea-

surement model:

z = h(x) + e (1)

where z is the M -dimensional vector of measurements gath-

ered from the field, x is the N -dimensional vector of state vari-

ables, h is the vector of measurement functions, defining the

relationship between state variables and measured quantities

and e is the vector of measurement errors. Each measurement

zi has its own probability density function (PDF) fzi(·) that

reflects the probability distribution that can be associated to the

measurement. The choice of the PDF to be assumed depends

on the information available from characterization processes

or from the instruments specifications [22]. When further or

specific information is missing, as it is common when dealing

with instrument datasheets, uniformity should be assumed with

a value range defined by the measurement accuracy. In this

case, the PDF of the corresponding measurement error ei
becomes:

fei(a) =

{

1
2∆zi

, ∀a ∈ (−∆zi,+∆zi)

0, otherwise
(2)

where ∆zi and −∆zi are the upper and lower limit of the

error interval. Instead, if normality is considered, the following

holds:

fei(a) =
1√

2πσzi

e
− a2

2σ2
zi (3)

where σzi = σei is the standard deviation of zi. If not directly

available, σzi is typically chosen as a fraction of the ∆zi
(depending on the assumed coverage factor).

A. Bayes Approach for DSSE

With a Bayesian approach, the estimated state x̂ can be ob-

tained from the posterior distribution, given the measurement

vector and the prior distribution of the state. In this context,

the estimation is obtained as the expectation of the posterior

distribution, given the measurements, as follows:

x̂ = E[x|z] =
∫∫

afx|z(a|z)da (4)

where the multidimensional integral is performed in the whole

state space and a represents the integration variable that spans
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the values x can assume, see [23]. Following the Bayes

paradigm, the posterior is built as follows:

fx|z =
fz|xfx

fz
(5)

where fx is the prior PDF of the state variables and fz|x
is the conditional PDF of the measurements, that becomes

the likelihood function of the state given the measurements

set. The measurement vector can include conventional mea-

surements as voltage amplitude, current amplitude or power

(active and reactive branch or node powers) measurements, or

phasor measurements obtained by phasor measurement units

(PMUs) synchronized with respect to a coordinated universal

time reference. In the DSSE, due to the scarcity of real-

time measurements, prior information on loads and generators

power becomes necessary to obtain the full observability of

the state. This data are usually used in the DSSE as pseu-

domeasurements to which a large uncertainty is associated.

The statistical description of the absorbed (or generated)

powers can be usually extracted by the historical data and

exploited to integrate the inputs of the DSSE. The underlying

probability distribution can be non-Gaussian, also depending

on the type of the loads and generators, on the time resolution

of the available statistical information and on the degree of

aggregation of the adopted model. This observation, together

with the possible non-gaussianity of the measurements, is

the main reason to design an estimation algorithm based

on Bayes theory, which allows the state to be estimated

considering the full statistical description of the measurements

and pseudomeasurements.

The proposed DSSE approach directly applies the Bayes’

rule (5), by considering as state vector the vector of power

injections along with a voltage node phasor (the slack bus is

chosen). Thus the state x can be defined as follows:

x =









Vs

ϕs

P

Q









(6)

where P and Q are the active and reactive node power balance

vectors, while Vs and ϕs are the voltage magnitude and phase

angle of the chosen reference node. If at least one PMU

measurement is available, the absolute phase angle can be

measured [5]. Moreover, as shown in [24], if at least two

PMUs are present, adding a reference phase angle in the state

allows also to improve the estimation of the absolute phase

angle profile beyond the accuracy of PMUs. Otherwise, only

phase angle differences can be evaluated and ϕs should be

removed from the state vector.

The DSSE formulation requires the definition of the ele-

ments in (5). The prior fx can be obtained by the statistical

knowledge of P and Q and by typical assumptions on slack

bus voltage. In particular, the PDFs of active and reactive

powers can be derived by a model matching with known dis-

tributions or in an empirical way, by histograms or empirical

distribution fitting (kernel based for instance). The prior fVs

of Vs can be easily assumed as uniform in a given interval

(1± 0.1 p.u., for instance).

In practice, when PMUs are available, the substation bus is

usually monitored and the corresponding phase angle can be

chosen as a reference: a uniform PDF fϕs
around the measured

value can thus be adopted to define the prior considering

the maximum PMU phase angle deviation. In all the other

cases, without any loss of generality and recalling that phase

angle differences are low in distribution networks, a guess

interval can be used to define the prior around the nearest

PMU measurement.

The likelihood function is instead built from the information

available on the measurement accuracy. In [20] the conditional

PDF was assumed to be the product of M independent Gaus-

sians (one for each measurement) with standard deviations

chosen as one-third of the corresponding maximum deviations.

However, if only accuracy specifications reported in instru-

ment datasheets are available, the assumption of uniformly

distributed measurements is more reasonable. Assuming inde-

pendence among measurements, it is thus possible to express

the conditional PDF fz|x as follows:

fz|x(b|a) =
M
∏

i=1

fzi|x(bi|a) =
{

1∏
M
i=1

2∆zi
, ∀b ∈∏M

i=1[hi(a)−∆zi, hi(a) + ∆zi]

0, otherwise
(7)

where b is the generic point of the space and hi(·) is the mea-

surement function of the i-th measurement (i-th component of

h(·)). As described in Section II-D on numerical integration,

to solve (4), several candidates a have to be computed for the

state x and, for each point, the corresponding measurement

vector b is computed. If the state is defined as in (6) all

the needed quantities can be derived by means of powerflow

calculation and all the measurement values bi to be used in

(7) can thus be obtained.

Once fx and fz|x are computed, the posterior of the state

with respect to the given measurement set is obtained up to

a multiplicative factor. The numerator in (5) is calculated,

whereas the denominator, represented by the integration of

the numerator in the whole state space, is not needed for

the numerical solution of the DSSE estimation, as it is better

described in Section II-D. The denominator, which represents

the overall probability of the measurements, is a constant and

thus does not affect the space exploration performed to achieve

the estimated state.

B. Handling of PMU Measurements

PMUs measure amplitude and phase angles of voltage and

current phasors. Depending on the specifications given in the

device datasheet by the PMU manifacturer, two typical expres-

sions of the measurement accuracy can be found: amplitude

maximum deviation percentage (Max AE %) and maximum

phase angle deviation (Max PE), or maximum percent Total

Vector Error (TVE %).

In the first case, for a generic measured voltage phasor

v̄ = V ejϕv , amplitude and phase angle measurements can

be inserted as uniform random variables as in (2), where

∆zV = V ·Max AE %
100

and ∆zϕv
= Max PE, respectively.
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Current phasors can be handled analogously. This approach is

similar to that usually applied when the PMU measurements

are included in classical WLS DSSE, depending also on the

assumed probability distribution.

In the second case, when only the maximum TVE % is

known, the proposed algorithm allows a phasor measurement

handling that directly reflects the available information about

measurement uncertainty. In fact, it is possible to directly

define the joint PDF of the amplitude and phase angle given

the state x (discussing only the voltage phasor measurement

for the sake of simplicity), as follows:

fzV ,zϕv |x
(b̄|a) = fzV ,zϕv |x

(B,ϕb|a) =
{

1
π∆zV

2 , ∀b̄ ∈ |b̄− h̄v(x)| ≤ ∆zV

0, otherwise
(8)

where zV and zϕv
stands for the corresponding amplitude and

phase angle measurements, b̄ = Bejϕb is the generic phasor

in the plane, h̄v(·) is the complex measurement function of

v̄ and the bivariate PDF clearly defines a region of uniform

probability describing a circle of radius equal to the maximum

vector error around the measured phasor.

C. Prior Definition in presence of Correlation between Active

and Reactive Power

From the statistics of the absorbed/generated active and

reactive powers from loads/generators, analytical models or

empirical distributions can be obtained and thus the priors

computed for each node. In [20], active and reactive power

injections/absorptions at a given node i (that is Pi and Qi)

were assumed uncorrelated, but, under real network operation,

it is often useful to consider also correlation in the probabilistic

model of the corresponding prior.

For this reason, in this paper, for each node i, the PDFs fPi

and fQi
, obtained from historical and statistical data, are con-

sidered as the marginals of the two-dimensional distribution

of the node power balance. The correlation is introduced in

the model of each Pi, Qi couple by means of a bi-dimensional

copula. For each node i, the copula Ci associated to the two

random variables Pi and Qi is a bi-variate random vector and

can be defined, for instance, by its joint cumulative distribution

function:

FCi
(u1, u2) = P[UPi

≤ u1, UQi
≤ u2] (9)

where UPi
= FPi

(Pi) and UQi
= FQi

(Qi) are the two

random variables obtained by transforming Pi and Qi by

means of their cumulative distribution functions. With such

transformations, UPi
and UQi

become uniform variables in

the interval (0, 1) and FCi
allows to express the correlation

between the active and reactive powers. In fact, Sklar’s The-

orem ([25]) guarantees that any multivariate joint distribution

can be written in terms of univariate marginal distribution

functions and a copula which describes the dependence struc-

ture between the variables. As a consequence, it is possible

to decouple the prior definition problem into power marginals

fitting and copula modeling. The bi-variate prior corresponding

to the node pseudomeasurements can thus be computed in a

generic point (pi, qi) as:

fPi,Qi
(pi, qi) = fCi

(FPi
(pi), FQi

(qi))·fPi
(pi)·fQi

(qi) (10)

where fCi
indicates the copula PDF. In this paper, without

loss a generality, a simple Gaussian copula has been used for

the tests to keep correlation into account (see Sections III and

IV).

Once the node prior is defined, the overall prior PDF of the

state can be computed as follows:

fx(a) = fVs
(a1)fϕs

(a2)

Nbus
∏

i=2

fPi,Qi
(ai+1, ai+Nbus

) (11)

where the vector a is arranged as in (6) and Nbus indicates

the number of buses corresponding to loads or generators. The

expressed formulation is general, but can be easily adapted

to the case of zero-injection nodes. It is sufficient to reduce

the state, and to substitute the corresponding state values

with zero constants. This is particularly interesting in the

context of medium voltage networks, in which there are often

several zero-injection constraints. In the case of traditional

measurements only, as aforementioned, the ϕs is not included

in the state vector and, correspondingly, fϕs
is dropped from

(11).

D. Numerical integration of Bayes estimation

The solution of (4) and thus of the DSSE is performed by

a numerical evaluation, using a Metropolis-Hastings (M-H)

algorithm as in [20]. The method allows to obtain a sequence

of points x, belonging to the state space, with the statistical

properties described by the target distribution Γ(x) = fx|z.

The M-H algorithm works iteratively building the chain of

the states xk with simple rules. From an initial guess of the

actual state, at each iteration k, using a proposal transition

PDF Π(d|xk), a new proposal state point yk+1 is extracted

and acts as a candidate for the next point xk+1 determined

with the following decision step:

xk+1 =

{

yk+1, with a given probability α(yk+1|xk)

xk, otherwise

(12)

where α is the acceptance probability that, when the proposal

distribution is symmetric (Π(xk|yk+1) = Π(yk+1|xk)), can

be expressed as follows:

α(yk+1|xk) = min

{

1,
Γ(yk+1)

Γ(xk)

}

(13)

As a consequence, α(yk+1|xk) is one when Γ(yk+1) ≥ Γ(xk)
(the ratio of the two probability densities is greater than one,

thus meaning an increase in the probability is achieved) and

the new point is always kept, otherwise it is accepted with

a probability equal to the relative decrease of the target PDF

when passing from the current point to the proposed one.

To make the numerical computation more stable and the

Markov chain definition more effective, all the computations

concerning the PDFs are here performed by means of log-

arithms (using the so-called logPDF functions, log f in the
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following for brevity). With this choice, yk+1 is accepted if

the logarithm of a random variable u, extracted from a uniform

distribution on the interval (0, 1), is less than log(α(yk+1|xk))
(or always accepted if α(yk+1|xk) = 1). Recalling the

definition of Γ in the specific case, from (7) and (11) the

following expression is obtained while computing α:

log(α(yk+1|xk)) = min {1,
M
∑

i=1

[

log fzi|x(yk+1)− log fzi|x(xk)
]

+ log fVs
(yk+1,1)− log fVs

(xk,1)

+ log fϕs
(yk+1,2)− log fϕs

(xk,2)

+

Nbus
∑

i=2

[log fCi
(FPi

(yk+1,i), FQi
(yk+1,i+Nbus

))

− log fCi
(FPi

(xk,i), FQi
(xk,i+Nbus

))

+ log fPi
(yk+1,i)− log fPi

(xk,i)

+ log fQi
(yk+1,i+Nbus

)− log fQi
(xk,i+Nbus

)]} (14)

where the same state as in (6) is assumed and the second

subscript index for yk+1,i (and analogously for the other

variables) indicates the element position in the vector yk+1.

Under a few constraints, the obtained chain converges to

the desired posterior distribution, and is ergodic. To allow

a faster exploration of the state space, an adaptive proposal

distribution is used as in [20] and a custom tailored version

of the algorithm in [26] has been chosen. Once n points in

the state space are obtained, the DSSE estimation is given

by their average (excluding the first initial burn-in period).

Due to the mentioned properties of the extracted samples,

the obtained average is the numerical computation of (4) and

thus represents the estimation of the expected state given the

prior and measurement information. With simple statistical

estimators, quantiles of the posterior can be also computed

for each component of the state to estimate the uncertainty

intervals to be associated to the estimated quantities.

III. STATISTICAL ANALYSIS OF POWER PROFILES

The DSSE has to be designed to use, besides SCADA

measurements and, as increasingly expected in the near future,

synchrophasors at primary and secondary substations, also

active and reactive power information at the nodes. In case of

LV systems, the smart meters, connected at the terminals of

loads and/or distributed generators (DGs), can help collecting

data on the behavior of the loads/generators in terms of active

and reactive power injections. In [20] it was shown that, in

the LV case, single electrical users, both residential and small

commercial industrial entities, have peculiar power distribu-

tions, much different from normality, thus taking significant

advantages from the application of a Bayesian approach.

In this paper the application to MV grids is specifically

explored, in order to reinforce the advantages and the appli-

cability of the proposed method. At this higher voltage level,

the relevance of the Bayes approach could be questioned by

considering that the aggregation of several LV customers with

limited power consumption might give rise to distributions

much closer to the Gaussian PDF. Actually, in MV networks,

the aggregation of small LV customers coexist with large

commercial and industrial customers. Therefore, the MV loads

can also show strong non-Gaussian power profiles, due to

peculiar features of load units. Besides, the DGs often have

non-normal statistical features, thus making the scenario even

more interesting. As recalled in Section II-A, the choice of the

model must be made on a case by case basis, since the type

of loads, the level of aggregation and of profile information

may influence the decision.

Power measurements in MV nodes can be directly integrated

in the monitoring system and DSSE architecture. When this

does not happen, such power measurements can be used

to get a statistical knowledge of the users behavior. This

information represents the pseudomeasurements of the DSSE

and is traditionally provided by assigning an expected value

and a standard deviation to the forecast node power balance

at a given time point. In the proposed Bayes approach, the

pseudomeasurements are directly represented by the PDFs

built from the collected data and the models of loads and

generators. In a real application, power measurements can

be performed in a subset of the electricity users [11] to

gather the statistical information on the exchanged power

consumptions/generations and build the pseudomeasurements

for all the remaining users, as done in [20] for LV networks.

For this paper, sample statistical resources for MV loads

have been obtained from the OpenEI energy information

repository [27] for the state of California in US. Specifically,

profiles with one hour time resolution have been extracted for

multi-family residential buildings, supermarkets and primary

schools. Similarly, power profiles, with one hour time resolu-

tion, for PV power plants were extracted from the PVWatts

Calculator tool [28] based on historical irradiance data, from

the state of California in US. Comparing different daily

power profiles suggested that, in each time instant the power

generation or consumption (or, alternatively, the difference

of the two, if they are related to a single MV node) can

have a non-Gaussian probability distribution, whose pattern

should be evaluated for proper integration into the DSSE as

pseudomeasurement. The patterns can be usually differentiated

for loads among seasons (winter, middle season, summer),

weekdays (working days, Saturdays and Sundays) and, of

course, time of the day (that is associated to a given hour).

For PV generation, the statistics can be differentiated among

seasons and time of the day.

The histograms for the loads are presented in Fig. 1, in terms

of relative frequency of occurrence, for a typical supermarket

profile (with size and equipment as defined in [27]) for

three different hours of a typical mid-season (spring-autumn)

working day. In Fig. 2 a power consumption histogram is

presented for winter, mid-season and summer, given the same

time of the day (13:00). It can be observed that the load

absorption shows to be strictly non-Gaussian. Furthermore,

changes with time of the day and season do not only impact

the average power consumption but also the shape of the

distribution, and thus the uncertainty of the corresponding

pseudomeasurement.

Further observations may be done based on the histogram
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Fig. 1. Comparison of load power consumption histograms of a typical
supermarket at 06:00 and 13:00 and 22:00 of a typical working day of mid
season.

Fig. 2. Comparison of load power consumption histograms of a typical
supermarket at 13:00 between summer, mid-season and winter working days.

Fig. 3. Comparison of PV power production histograms at 13:00 between
summer and winter days.

of power generation valid for a standard PV plant of 200 kW,

therefore suitable for installation at MV level. In Fig. 3, the

histogram for PV power production in winter and summer at

13:00 are compared. In Fig. 4, the PV histograms are plotted

for two different times of the day (09:00 and 15:00) of a typical

mid-season day. It can be noticed that, as expected, both season

and hour strongly impact on the probability distribution of

the generated power. Anyway, for such a type of plant, even

if the PDF can change, resulting in shape modification and

average shifting, it is clearly non-Gaussian. For this reason, a

correct modeling of DG behavior is essential to build reliable

pseudomeasurements.

Fig. 4. Comparison of PV power production histograms at 09:00 and 15:00
of a typical mid-season day.

Beside the presented statistics, it is also important to give a

representation of the correlation, in particular between active

and reactive power at a given node. In this paper, to test the

features of the proposed algorithm, the presence of correlation

is simulated by defining the power factors of the given loads.

In particular, the cosφ is assumed to be a uniformly distributed

random variable in a given interval (in the tests a range

0.95–1 is considered) and to be independent from the active

power. With such a rule, for each active power value, the

corresponding reactive power is extracted, thus building a full

dataset and giving a realistic relationship between Pi and Qi

(for the generic node i) to be used in the prior modeling. In

the following, the method described in Section II-C is adopted

to include correlation, while the kernel distribution fitting with

Epanechnikov kernel is used to define the marginal PDFs.

All the above considerations build the groundwork for

the study on the impact of prior definitions on the DSSE

estimation uncertainty in the next section.

IV. TESTS AND RESULTS

In the following, a 20 kV MV sample network is used to

discuss the performed tests and highlight the characteristics

of the proposed DSSE. The network has six buses along one

feeder (see Fig. 5): the first one corresponds to the HV/MV

substation, while the others are connected to MV loads that

combine absorption and generation as reported in Table I.

Since it is a simple network for illustrative purposes, all

the line impedances have been assumed equal to 0.7031 +
j0.141 Ω/km (corresponding to a cable OC AL 50 169 from

Atlantide project [29]) and the line length is assumed equal to

0.8 km for each branch.

Fig. 5. Topology of the sample MV test grid.
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TABLE I
TYPE OF LOADS AND GENERATORS CONNECTED TO EACH BUS

Node 2 3 4 5 6

Customers apartments supermarket primary school apartments apartments

Generators PV - PV - PV

Both non-synchronized and synchronized measurements

have been considered. Voltage amplitudes, active and reactive

power flows, and voltage and current phasors are considered

in the following. Measurements are assumed to be uniformly

distributed in the interval defined by the accuracy of the instru-

ments. In particular, ±1% for voltage magnitude and ±3% for

active and reactive power flow measurements are employed.

For synchronized measurements, ±0.7 % and ±0.7 · 10−2 rad

are assumed, respectively, for amplitude and phase angle PMU

measurements.

As described in Section III, the load and generator priors

can be referred to a given hour and season. All the reported

results in the following correspond to the time of the day 10:00

of a generic mid-season day.

Since the proposed estimator is conceived to keep into ac-

count a better model of pseudomeasurements, it is particularly

interesting to check its behavior in terms of power estimations.

The knowledge of power injections from DSSE is crucial,

for instance, for distribution management system applications

(DMS).

In a first test, as a counter-check of the validity of the

Bayesian approach, the DSSE is performed when only one

voltage magnitude measurement is available at the substation.

This means that no information is given other than pseu-

domeasurements, that is prior knowledge on the nodes power

absorption/injection.

In Figs. 6(a) and 6(b), as an example, the posterior PDFs

obtained from the points produced by the M-H algorithm chain

for the active powers of nodes 3 and 4 (P3 and P4) are reported

along with their prior PDFs. The posterior, as for the prior, has

been obtained by kernel fitting from the data. As expected, the

two curves are very similar, confirming that the method is able

to reproduce the statistical behavior of the data and to give as

output a representative population. Besides, the capability of

matching a non-Gaussian distribution suggests the advantages

of the method when generic loads/generators are present.

The inclusion of the correlation, following the approach

based on copulas and described in Section II-C, allows to

match the dependency of active and reactive power for each

node. As an example, for node 4, the correlation coefficient

ρP4Q4
of the generated data is 0.87, very similar to 0.88, which

is the correlation coefficient of the original P4 and Q4 data,

whereas it reduces to less than 10−3 if no correlation modeling

is used. Fig. 7 graphically shows how the correlation between

active and reactive power is reproduced.

Once the capability of the method to comply with a given

statistical description has been confirmed by the above prelim-

inary test, it is then possible to test its behaviour with different

measurement configurations. In particular, Figs. 8(a) and 8(b)

report the power injection estimation results when two voltage

measurements (nodes 1 and 5) and two active and reactive
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Fig. 6. Active power prior and posterior with only one voltage measurement:
a) node 3; b) node 4

Fig. 7. Active and reactive power injection scatter plot

power flow measurements (branches 1 and 3) are used. It is

clear how the impact of the measurements and, in particular,

of power flow ones, makes the posterior narrower, as expected

due the additional available information. Thus, the real-time

data help, during the estimation process, to neglect regions that

where suggested by the priors but are not supported by actual

measurement information. The posterior are still non-Gaussian

and the uncertainty intervals are non-symmetric around the

estimated values.

Focusing on the estimation accuracy, Table II shows the
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Fig. 8. Active power prior and posterior with voltage and powerflow
measurements: a) node 3; b) node 4

results in terms of Root Mean Square Errors (RMSEs) for

300 Monte Carlo trials when correlation is considered or not.

It is clear that, beside the advantages in the modeling, the

estimation accuracy is enhanced, except for node 5, which is

characterized by low power and power dispersion, and by low

correlation.

TABLE II
RMSE OF POWER INJECTION ESTIMATIONS WHEN CORRELATION IS

INCLUDED IN THE MODEL OR NOT

Node
RMSE [kW]

Decrease [%]
no correlation correlation

2 22.1 21.5 -3

3 21.8 21.1 -3

4 30.6 29.3 -4

5 1.7 1.7 0

6 30.5 29.3 -4

Further tests have been performed considering synchronized

measurements instead of conventional ones, and, in particular,

current phasors are used instead of power flow measurements.

For the aforementioned reasons, it is important to check the

DSSE performance in terms of power estimation also in the

case of a PMU-based measurement system. Fig. 9 shows

an example of the estimated node powers along with their

estimated expanded uncertainty intervals, compared with the
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Fig. 9. Active power estimations with their estimated uncertainties: compar-
ison of the Bayes and WLS approaches

WLS outcomes. The WLS is used as a term of comparison

because it is the most widespread technique nowadays in

DSSE and it gives the Bayesian estimator when measure-

ments and pseudomeasurements are normally distributed. The

intervals estimated with the method proposed in this paper

correspond to the 0.13 and 99.87 percentiles, while the ex-

panded uncertainties obtained with the WLS are obtained from

the standard uncertainties with coverage factor 3 (to define

the same confidence level). The estimated uncertainties are

clearly non-symmetric and quite different from the WLS ones,

thus reflecting the intrinsic non-gaussianity of the quantities

involved in the estimation process.

The performance are also verified in terms of RMSE of

the active power estimations on 300 different operative con-

ditions, as above. Fig. 10 reports the results and shows that

the proposed method generally outperforms WLS when the

same measurement configuration is used. A maximum RMSE

reduction is obtained for node 2 (about 22 %), while node

5 accuracy is practically unaffected, mainly due to the afore-

mentioned associated load behavior. It is important to recall

that the WLS uses the averages and the standard deviations

of the available prior PDFs as pseudomeasurements. Besides,

for a fair comparison, the WLS has been modified to include

the covariances σPi,Qi
(obtained from prior information) of

each node i in its weighting matrix (as in [30], [31]) and all

the measurements are modeled in the same way. To provide

a broader picture, in Fig. 10 the results are compared also

to those achievable with the weighted least absolute value

(WLAV) estimation. As in the WLS, the WLAV weights are

obtained from the standard deviations of the prior PDFs. The

WLAV shows a lower estimation accuracy: a deeper discussion

of these aspects can be found, for instance, in [32].

Finally, some considerations on the computation time can

be reported, even though an optimization of the proposed

algorithm for prototyping is beyond the scope of the paper.

The computation time mainly depends on the measurement

computation function and on the number of the points for

the M-H chain. On a Windows 10 notebook with an Intel

i7 2.60 GHz processor, under Matlab 2015 environment,

with the same measurement configuration as in the last test

and 500000 computed points, the computation time is about

145 s. Even if clearly higher than classical WLS and WLAV
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Fig. 10. Comparison of active power estimation RMSE by means of Bayes,
WLS and WLAV approaches

estimators (ranging from a few to hundreds of milliseconds

in similar conditions) such time durations are perfectly com-

patible with the typical update interval of DMSs and load

profile information, which operate on a 15 minutes basis.

It is interesting to notice that even for larger networks the

number of points does not suffer of the dimensionality curse of

classical Monte Carlo methods and combinatorial approaches

[33]. For instance, with the 16-bus network used in [20], the

computation time increases of less than 10%. For very large

networks, a multi-area approach (as in [34]) can be easily

integrated with the proposed method. When correlation is

introduced the overall results are marginally affected and, as

expected, correlation helps in dimensionality reduction, thus

allowing good performance also with less points.

V. CONCLUSION

The paper presents a DSSE based on Bayes approach that

is able to include every type of measurement and pseudomea-

surement, no matter what is their statistical model. In partic-

ular, the proposed DSSE is able to reflect the dependency be-

tween active and reactive power and to directly translate prior

information on the power behavior of customers/generators.

The algorithm can be applied to MV networks and allows

achieving accurate estimations of the power flows, while

giving also a rich description of the uncertainty associated

with the estimated quantities, thus making it suitable to be

employed in the control applications relying on the DSSE

outcomes.
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[10] A. Abur and A. G. Expòsito, Power System State Estimation. Theory

and Implementation. Marcel Dekker, New York, 2004.
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