
2015 International Conference on ReConFigurable Computing and FPGA's

Outline

• Introduction:
– Problem statement

– Background

– Goals

• Coprocessing units generation:
– Coarse-Grained reconfiguration

– Tool flow

– Available coprocessing layers

• Performance assessment
– Use-case scenario

– Results

• Final remarks and future directions

Problem Statement

• HIGH PERFORMANCES real time applications:

– Media players, video calling...

• UP-TO-DATE SOLUTIONS

– Support for the last audio/video codecs, file formats...

• MORE INTEGRATED FEATURES in mobile devices:

– MP3, Camera, Video, GPS...

• PORTABILITY

• LONG BATTERY LIFE

– Convenient form factor, affordable price...

Problem Statement

• HIGH PERFORMANCES real time applications:

– Media players, video calling...

• UP-TO-DATE SOLUTIONS

– Support for the last audio/video codecs, file formats...

• MORE INTEGRATED FEATURES in mobile devices:

– MP3, Camera, Video, GPS...

• PORTABILITY

• LONG BATTERY LIFE

– Convenient form factor, affordable price...

• DATAFLOW MODEL OF COMPUTATION

– Modularity and parallelism  EASIER INTEGRATION AND FAVOURED RE-USABILITY

• COARSE-GRAINED RECONFIGURABILITY

– Flexibility and resource sharing  MULTI-APPLICATION PORTABLE DEVICES

Problem Statement

• HIGH PERFORMANCES real time applications:

– Media players, video calling...

• UP-TO-DATE SOLUTIONS

– Support for the last audio/video codecs, file formats...

• MORE INTEGRATED FEATURES in mobile devices:

– MP3, Camera, Video, GPS...

• PORTABILITY

• LONG BATTERY LIFE

– Convenient form factor, affordable price...

• DATAFLOW MODEL OF COMPUTATION

– Modularity and parallelism  EASIER INTEGRATION AND FAVOURED RE-USABILITY

• COARSE-GRAINED RECONFIGURABILITY

– Flexibility and resource sharing  MULTI-APPLICATION PORTABLE DEVICES

Automated are fundamental to guarantee
. Dealing with

systems, in particular for ,
state of the art still lacks in providing a broadly accepted solution.

Background: Hw Reconfigurability

• High flexibility bit-level reconfiguration

• Slow and memory expensive configuration phase

• Medium flexibility word-level reconfiguration

• Fast configuration phase

FG CG

Bit-level Word-level

Flexibility  
Reconf.
Speed  

Config.
Storage  

 ASIC

 GPP

 DSP

 Reconfig.
Systems

Performance

Fl
ex

ib
ili

ty

Background: Hw Reconfigurability

• High flexibility bit-level reconfiguration

• Slow and memory expensive configuration phase

• Medium flexibility word-level reconfiguration

• Fast configuration phase

FG CG

Bit-level Word-level

Flexibility  
Reconf.
Speed  

Config.
Storage  

 ASIC

 GPP

 DSP

 Reconfig.
Systems

Performance

Fl
ex

ib
ili

ty

Background : The Dataflow MoC

• Directed graph of actors (functional units)

• Actors exchange tokens (data packets) through dedicated
channels

• Explicit the intrinsic application parallelism.

• Modularity favours model re-usability/adaptivity.

• I/O ports number

• I/O ports depth

• I/O ports burst of tokens

actions

state

Background : The Dataflow MoC

• Directed graph of actors (functional units)

• Actors exchange tokens (data packets) through dedicated
channels

• Explicit the intrinsic application parallelism.

• Modularity favours model re-usability/adaptivity.

• I/O ports number

• I/O ports depth

• I/O ports burst of tokens

actions

state

• High-level dataflow combination tool, front-end of the
Multi-Dataflow Composer tool.

• Concrete definition of the hardware template and of the
dataflow-based mapping strategy.

• Integration of the complete synthesis flow.

Research Evolution and Objectives

• Implementation of a coarse-grained multi-standard
decoder.

: automatic deployment of
, by means of and

strategies.

• High-level dataflow combination tool, front-end of the
Multi-Dataflow Composer tool.

• Concrete definition of the hardware template and of the
dataflow-based mapping strategy.

• Integration of the complete synthesis flow.

Research Evolution and Objectives

• Implementation of a coarse-grained multi-standard
decoder.

Multi-Dataflow Composer (MDC) tool

Baseline MDC Tool

Structural Profiler

Dynamic Power
Manager

C
o

p
ro

ce
ss

o
r

G
en

er
a

to
r

Reconfigurable Platform Composer Tool Project (L.R. 7/2007, CRP-18324)
January 2012 – December 2015

http://sites.unica.it/rpct/

SYSTEM
COMPLEXITY

POWER
MANAGEMENT

TIME
TO

MARKET

DESIGN
AUTOMATION

Outline

• Introduction:
– Problem statement

– Background

– Goals

• Co-processing units generation:
– Coarse-Grained reconfiguration

– Tool flow

– Available co-processing layers

• Performance assessment
– Use-case scenario

– Results

• Final remarks and future directions

CG Datapath Merging
Dataflow Description

Coarse Grained Reconfigurable
Hardware Platform

Dataflow Descriptions

Coarse Grained Hardware Platform

1:1

2:1

CG Datapath Merging
Dataflow Description

Coarse Grained Reconfigurable
Hardware Platform

Dataflow Descriptions

Coarse Grained Hardware Platform

APPLICATION # KERNEL # ACTORS # SBOX

zoom 7 87 54

1:1

2:1

CG Datapath Merging

1:1

Dataflow Description

Coarse Grained Reconfigurable
Hardware Platform

Dataflow Descriptions

Coarse Grained Hardware Platform

: automatic management of the
and of the custom .

2:1

Proposed Flow

Proposed Flow

PHASE 1: HIGH-LEVEL SPECIFICATION
COMPOSITION

Proposed Flow

PHASE 1: HIGH-LEVEL SPECIFICATION
COMPOSITION

PHASE 2:
COMPUTING CORE

DEFINITION

Proposed Flow

PHASE 1: HIGH-LEVEL SPECIFICATION
COMPOSITION

PHASE 2:
COMPUTING CORE

DEFINITION

PHASE 3:
COPROCESSOR
SPECIFICATION

Proposed Flow

PHASE 1: HIGH-LEVEL SPECIFICATION
COMPOSITION

PHASE 2:
COMPUTING CORE

DEFINITION

PHASE 3:
COPROCESSOR
SPECIFICATION

PHASE 4: IP -DEPLOYMENT

PHASE 1.a: ORCC acquires all the input dataflow specifications, one by one, and
transform them into java intermediate representations.

Baseline MDC: High-Level Specif. Composition

front-end

back-ends

ORCC

IR
IR

CAL

XDF

RVC-CAL

specifications

IR

N:N

front-end

back-ends

ORCC

IR
IR

PHASE 1.b: MDC front-end performs the datapath merging. It outputs the

Baseline MDC: High-Level Specif. Composition

CAL

XDF

fr
o
n
t-

e
n

d

MDC

RVC-CAL

specifications

IR

XDF multi

dataflow

Tab

N:N

SBox D1 D2

S0 0 1

S1 0 1

S2 0 1

N:1

multi-dataflow network and
the configuration table (Tab).

sbox1x2

front-end

back-ends

ORCC

IR
IR

PHASE 2.a: Xronos and Turnus are used to create the library of HDL components,
which implement the actors functionalities.

Baseline MDC: Computing Core Definition

CAL

XDF

fr
o
n
t-

e
n

d

MDC

RVC-CAL

specifications

IR

XDF multi

dataflow

Tab

N:N

N:1

XRONOS

High Level

Synthesis

WEIGHTS

FIFO

SIZES

TURNUS

Co-

Exploration

Framework

TRACES

HDL

Components

Library

crc32 crc32_x

inflate parser

sbox2x1

fr
o
n
t-

e
n

d

CGR

comp. core

front-end

back-ends

ORCC

IR
IR

PHASE 2.b: MDC backend assembles the Coarse-Grained Reconfigurable
computing core.

Baseline MDC: Computing Core Definition

CAL

XDF

MDC

RVC-CAL

specifications

IR

XDF multi

dataflow

Tab

N:N

N:1

XRONOS

High Level

Synthesis

WEIGHTS

FIFO

SIZES

TURNUS

Co-

Exploration

Framework

TRACES

HDL

Components

Library

b
a
c
k
-e

n
d

fr
o
n
t-

e
n

d

CGR

comp. core

front-end

back-ends

ORCC

IR
IR

PHASE 3: Template and drivers are characterized according to the user selected
coprocessor and derived from the multi-dataflow network analysis.

MDC Coprocessor Generator: Specification

CAL

XDF

MDC

RVC-CAL

specifications

IR

XDF multi

dataflow

Tab

N:N

N:1

XRONOS

High Level

Synthesis

WEIGHTS

FIFO

SIZES

TURNUS

Co-

Exploration

Framework

TRACES

HDL

Components

Library

b
a
c
k
-e

n
d

Coprocessor

Template

Drivers

Template

& Driver

Configuration

USER

REQUEST

fr
o
n
t-

e
n

d

CGR

comp. core

front-end

back-ends

ORCC

IR
IR

PHASE 4: The processor-accelerator system is assembled and a Xilinx compliant IP
is released.

MDC Coprocessor Generator: Deployment

CAL

XDF

MDC

RVC-CAL

specifications

IR

XDF multi

dataflow

Tab

N:N

N:1

XRONOS

High Level

Synthesis

WEIGHTS

FIFO

SIZES

TURNUS

Co-

Exploration

Framework

TRACES

HDL

Components

Library

b
a
c
k
-e

n
d

Coprocessor

Template

Drivers

Template

& Driver

Configuration

USER

REQUEST

IP
 D

e
p

lo
y
m

e
n

t

Template Interface Layer Architecture

Template Interface Layer Architecture

• Memory-mapped loosely coupled coprocessor: accessible through the

system bus as a memory-mapped IP.

Template Interface Layer Architecture

• Memory-mapped loosely coupled coprocessor: accessible through the system bus

as a memory-mapped IP.

• Stream-based tightly coupled coprocessor: accessible through different full duplex

links, one for each I/O port.

Template Interface Layer Architecture

• Memory-mapped loosely coupled coprocessor: accessible through the system bus as a

memory-mapped IP.

• Stream-based tightly coupled coprocessor: accessible through different full duplex links,

one for each I/O port.

• In both cases the Template Interface Layer:

– integrates a bank of configuration registers, to store the desired configuration;

– One (or more) front-end(s), to load data into the reconfigurable computing core;

– one (or more) back-end(s), to read the computed data from the reconfigurable

computing core.

MDC settings

LIST OF INPUT SPECIFICATIONS

TICK TO ENABLE COPROCESSOR GENERATION.
REQUESTED INPUT: TIL to be generated.

Outline

• Introduction:
– Problem statement

– Background

– Goals

• Coprocessing units generation:
– Coarse-Grained reconfiguration

– Tool flow

– Available coprocessing layers

• Performance assessment
– Use-case scenario

– Results

• Final remarks and future directions

Use-Case: JPEG Codec

• Based on the simple profile ITU-T.IS 1091 standard.

• I/O footprint of the multi-dataflow system:

– 3 input ports and 1 output port for the encoder and 1 input
and 2 outputs for the decoder;

– data channel depths vary from 8 to 32 bit;

– token patterns less than or equal to 64.

QUANTIZER

DEQUANTIZER

HUFFMANN
ENCODER

HUFFMANN
DECODER

2D
TRANSFORM

coeffs

data

ENCODER
RASTER

DECODER
PARSER

SB
O

X

SB
O

X

SB
O

X

SOI

CbCr

Y

bitstream

bitstream

CbCr

Y

…
…
…
…
…
…

…

…

…

…

…

…

…

…

…

64 pixels

6
4

 p
ix

el
s

JPEG encoder JPEG decoder Shared actors

32

8

8

8

8

8

8

Designs Under Tests: Xilinx Virtex-5 330 board
Microblaze + 7 (4 inputs and 3 outputs)
point-to-point links (Fast Simplex Links,
FSLs) + Stream-Based Coprocessor
(s-sys) + Local Bus (to access memory
and other peripherals)

Microblaze + Memory-Mapped
Coprocessor (mm-sys) + Local Bus (to

access memory and peripherals,
including mm-sys)

Architectural Results

critical path determined by the
coarse-grained reconfigurable

computing core

s-sys and mm-sys:
Frequency 57.8 MHz

Architectural Results

s-sys: no need for the I/O address
configuration phase

less information have to be

accessed and managed

critical path determined by the
coarse-grained reconfigurable

computing core

s-sys and mm-sys:
Frequency 57.8 MHz

0,00

0,50

1,00

1,50

2,00

mm-sys
s-sys

1,86

1,32

1,6

0,632

Driver Size [kB] Config. Time [ms]

Architectural Results

s-sys: no need for the I/O address
configuration phase

less information have to be

accessed and managed

critical path determined by the
coarse-grained reconfigurable

computing core

s-sys and mm-sys:
Frequency 57.8 MHz

s-sys: 7 dedicated
communication channels

necessary resource overhead

0

20000

40000

Slice Regs
Slice LUTs

BUFGs
BRAMs

10380 (5%)

36563 (17%)

8 (25%)
112 (38%)

9511 (4%)

47607 (22%)

8 (25%)
117 (40%)

Used Resources (% on the board)

mm-sys s-sys

0,00

0,50

1,00

1,50

2,00

mm-sys
s-sys

1,86

1,32

1,6

0,632

Driver Size [kB] Config. Time [ms]

Performance Results

s-sys vs. mm-sys: parallel loading and storing of the I/O ports

halved execution latency

0 50 100

6,06

2,93

70,53

Encoder Execution Time [ms]

arm s-sys mm-sys

0 50 100

8,72

4,54

101,29

Decoder Execution Time [ms]

arm s-sys mm-sys

Performance Results

s-sys vs. mm-sys: parallel loading and storing of the I/O ports

halved execution latency

arm: C++ code automatically synthesized from the MPEG-RVC networks of
the JPEG codec with Xronos

mm-sys and the s-sys: consistent speed-up, despite the smaller operating

frequency [57.8 MHz vs 666.67 MHz]

0 50 100

6,06

2,93

70,53

Encoder Execution Time [ms]

arm s-sys mm-sys

0 50 100

8,72

4,54

101,29

Decoder Execution Time [ms]

arm s-sys mm-sys

Outline

• Introduction:
– Problem statement

– Background

– Goals

• Co-processing units generation:
– Coarse-Grained reconfiguration

– Tool flow

– Available co-processing layers

• Performance assessment
– Use-case scenario

– Results

• Final remarks and future directions

Conclusions and Perspectives
• Coarse-grained reconfigurable coprocessors are valuable and viable

solutions to achieve flexibility and high efficiency, but:

– mapping different computational requirements over the same substrate
it is not straightforward;

– debug and design effort increment with the number of requested
kernels to successfully deploy an efficient multi-functional IP.

Conclusions and Perspectives
• Coarse-grained reconfigurable coprocessors are valuable and viable

solutions to achieve flexibility and high efficiency, but:

– mapping different computational requirements over the same substrate
it is not straightforward;

– debug and design effort increment with the number of requested
kernels to successfully deploy an efficient multi-functional IP.

• Targeting a Xilinx FPGA technology, we proposed an automated flow
to accomplish:

– the automatic mapping of the different high-level specifications into a
unique multi-functional one (MDC baseline);

– the high-level-synthesis and composition of a coarse-grained
reconfigurable datapath capable of executing the different kernels (MDC
baseline);

– the easy integration of a custom stand-alone IP and its drivers, to be
used on the vendor environment (MDC coprocessor generator
extension).

Results and Perspectives
• Experimental results highlighted the peculiarities of the available

coprocessing units.

loosely tightly

Infrastructure constraints  

Resource footprint  

Performance  

Results and Perspectives
• Experimental results highlighted the peculiarities of the available

coprocessing units.

• Future developments

– @ the framework level:

• High-level analysis methods for the identification, at the application level, of
the different kernels to be accelerated.

• Automatic identification of the proper coupling level that will optimally serve
the selected kernel.

loosely tightly

Infrastructure constraints  

Resource footprint  

Performance  

Results and Perspectives
• Experimental results highlighted the peculiarities of the available

coprocessing units.

• Future developments

– @ the framework level:

• High-level analysis methods for the identification, at the application level, of
the different kernels to be accelerated.

• Automatic identification of the proper coupling level that will optimally serve
the selected kernel.

– @ the architecture level:

• Deployment of multi/hybrid accelerator environments.

loosely tightly

Infrastructure constraints  

Resource footprint  

Performance  

Reconfigurable Platform Composer Tool Project (L.R. 7/2007, CRP-18324)
January 2012 – December 2015

http://sites.unica.it/rpct/

