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Problem Statement 
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• UP-TO-DATE SOLUTIONS 
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Automated are fundamental to guarantee 
. Dealing with 

systems, in particular for , 
state of the art still lacks in providing  a broadly accepted solution. 



Background: Hw Reconfigurability 

• High flexibility bit-level reconfiguration 

• Slow and memory expensive configuration phase 
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Background : The Dataflow MoC 

• Directed graph of actors (functional units) 

• Actors exchange tokens (data packets) through dedicated 
channels 

• Explicit the intrinsic application parallelism. 

• Modularity favours model re-usability/adaptivity. 
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• High-level dataflow combination tool, front-end of the   
Multi-Dataflow Composer tool. 

• Concrete definition of the hardware template and of the 
dataflow-based mapping strategy. 

• Integration of the complete synthesis flow.  

Research Evolution and Objectives 

• Implementation of a coarse-grained multi-standard 
decoder. 
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PHASE 1.a: ORCC acquires all the input dataflow specifications, one by one, and 
transform them into java intermediate representations. 

Baseline MDC: High-Level Specif. Composition 
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PHASE 1.b: MDC  front-end performs the datapath merging. It outputs the  

Baseline MDC: High-Level Specif. Composition 
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PHASE 2.a: Xronos and Turnus are used to create the library of HDL components, 
which implement the actors functionalities. 

Baseline MDC: Computing Core Definition 
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PHASE 2.b: MDC backend assembles the Coarse-Grained Reconfigurable 
computing core. 
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PHASE 3: Template and drivers are characterized according to the user selected 
coprocessor and derived from the multi-dataflow network analysis.    

MDC Coprocessor Generator: Specification 
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PHASE 4: The processor-accelerator system is assembled and a Xilinx compliant IP 
is released.  

MDC Coprocessor Generator: Deployment 
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Template Interface Layer Architecture 

• Memory-mapped loosely coupled coprocessor: accessible through the system bus as a 

memory-mapped IP. 

•  Stream-based tightly coupled coprocessor: accessible through different full duplex links, 

one for each I/O port. 

• In both cases the Template Interface Layer: 

– integrates a bank of configuration registers, to store the desired configuration; 

– One (or more) front-end(s), to load data into the reconfigurable computing core; 

– one (or more) back-end(s), to read the computed data from the reconfigurable 

computing core. 
 



MDC settings 

LIST OF INPUT SPECIFICATIONS 

TICK TO ENABLE COPROCESSOR GENERATION. 
REQUESTED INPUT: TIL to be generated. 
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Use-Case: JPEG Codec 

• Based on the simple profile ITU-T.IS 1091 standard. 

• I/O footprint of the multi-dataflow system: 

– 3 input ports and 1 output port for the encoder and 1 input 
and 2 outputs for the decoder; 

– data channel depths vary from 8 to 32 bit; 

– token patterns less than or equal to 64.  
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Designs Under Tests: Xilinx Virtex-5 330 board 
Microblaze +  7 (4 inputs and 3 outputs) 
point-to-point links (Fast Simplex Links, 
FSLs) +  Stream-Based Coprocessor  
(s-sys)  + Local Bus (to access memory 
and other peripherals) 
 

Microblaze +  Memory-Mapped 
Coprocessor (mm-sys)  + Local Bus (to 

access memory and peripherals, 
including mm-sys) 
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Performance Results 

s-sys vs. mm-sys: parallel loading and storing of the I/O ports 
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s-sys vs. mm-sys: parallel loading and storing of the I/O ports 
 

halved execution latency 

arm: C++ code automatically synthesized from the MPEG-RVC networks of 
the JPEG codec with Xronos 

 
mm-sys and the s-sys: consistent speed-up, despite the smaller operating 

frequency [57.8 MHz vs 666.67 MHz] 
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Conclusions and Perspectives 
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solutions to achieve flexibility and high efficiency, but: 
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– debug and design effort increment with the number of requested 
kernels to successfully deploy an efficient multi-functional IP. 
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solutions to achieve flexibility and high efficiency, but: 

– mapping different computational requirements over the same substrate 
it is not straightforward; 

– debug and design effort increment with the number of requested 
kernels to successfully deploy an efficient multi-functional IP. 

• Targeting a Xilinx FPGA technology, we proposed an automated flow 
to accomplish: 

– the automatic mapping of the different high-level specifications into a 
unique multi-functional one (MDC baseline); 

– the high-level-synthesis and composition of a coarse-grained 
reconfigurable datapath capable of executing the different kernels (MDC 
baseline); 

– the easy integration of a custom stand-alone IP and its drivers, to be 
used on the vendor environment (MDC coprocessor generator 
extension). 
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• Future developments  

– @ the framework level: 

• High-level analysis methods for the identification, at the application level, of 
the different kernels to be accelerated.  

• Automatic identification of the proper coupling level that will optimally serve 
the selected kernel.  

– @ the architecture level: 

• Deployment of multi/hybrid accelerator environments. 
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