Conference on Design & Architectures for Signal & Image Processing

October 8-10, 2014

Madrid, Spain

Automatic Generation of Dataflow-Based Reconfigurable Co-processing Units

Francesca Palumbo
Università degli Studi di Sassari
PolComIng – Information Eng. Unit

Carlo Sau
Università degli Studi di Cagliari
DIEE – Dept. of Electrical and Electronics Eng.

OUTLINE

- Introduction:
 - Problem statement
 - Background
 - Goals
- Co-processing units generation:
 - Approach and baseline Multi-Dataflow Composer
 - Template Interface Layer: hardware and automatic composition
- Performance assessment
 - Use-case scenario
 - Results
- Final remarks and future directions

OUTLINE: INTRODUCTION

- Introduction:
 - Problem statement
 - Background
 - Goals
- Co-processing units generation:
 - Approach and baseline Multi-Dataflow Composer
 - Template Interface Layer: hardware and automatic composition
- Performance assessment
 - Use-case scenario
 - Results
- Final remarks and future directions

PROBLEM STATEMENT

CONSUMER NEEDS

- HIGH PERFORMANCES real time applications:
 - Media players, video calling...
- UP-TO-DATE SOLUTIONS
 - Support for the last audio/video codecs, file formats...
- MORE INTEGRATED FEATURES in mobile devices:
 - MP3, Camera, Video, GPS...
- PORTABILITY
- LONG BATTERY LIFE
 - Convenient form factor, affordable price...

PROBLEM STATEMENT

CONSUMER NEEDS

- HIGH PERFORMANCES real time applications:
 - Media players, video calling...
- UP-TO-DATE SOLUTIONS
 - Support for the last audio/video codecs, file formats...
- MORE INTEGRATED FEATURES in mobile devices:
 - MP3, Camera, Video, GPS...
- PORTABILITY
- LONG BATTERY LIFE
 - Convenient form factor, affordable price...

POSSIBLE SOLUTION

- DATAFLOW MODEL OF COMPUTATION
 - Modularity and parallelism → EASIER INTEGRATION AND FAVOURED RE-USABILITY
- COARSE-GRAINED RECONFIGURABILITY
 - Flexibility and resource sharing → MULTI-APPLICATION PORTABLE DEVICES

PROBLEM STATEMENT

CONSUMER NEEDS

- HIGH PERFORMANCES real time applications:
 - Media players, video calling...
- UP-TO-DATE SOLUTIONS

Automated DESIGN FLOW are fundamental to guarantee SHORTER TIME-TO-MARKET. Dealing with APPLICATION SPECIFIC MULTI-CONTEXT systems, in particular for KERNEL ACCELERATORS, state of the art still lacks in providing a broadly accepted solution.

Convenient form factor, affordable price...

POSSIBLE SOLUTION

- DATAFLOW MODEL OF COMPUTATION
 - Modularity and parallelism → EASIER INTEGRATION AND FAVOURED RE-USABILITY
- COARSE-GRAINED RECONFIGURABILITY
 - Flexibility and resource sharing → MULTI-APPLICATION PORTABLE DEVICES

BACKGROUND: CG RECONFIGURABILITY

FINE- GRAINED (FG) ACCELERATORS

- High flexibility bit-level reconfiguration
- Slow and memory expensive configuration phase

COARSE-GRAINED (CG) ACCELERATORS

- Medium flexibility word-level reconfiguration
- Fast configuration phase

BACKGROUND: CG RECONFIGURABILITY

AUTOMATIC GENERATION

FINE- GRAINED (FG) ACCELERATORS

VIVADO (XILINX) NIOS II (ALTERA)

- High flexibility bit-level reconfiguration
- Slow and memory expensive configuration phase

COARSE-GRAINED (CG) ACCELERATORS

- Medium flexibility word-level reconfiguration
- Fast configuration phase

BACKGROUND: CG RECONFIGURABILITY

AUTOMATIC GENERATION

FINE- GRAINED (FG) ACCELERATORS

- High flexibility bit-level reconfiguration
- Slow and memory expensive configuration phase

VIVADO (XILINX) NIOS II (ALTERA)

COARSE-GRAINED (CG) ACCELERATORS

- Medium flexibility word-level reconfiguration
- Fast configuration phase

	FG	CG
	Bit-level	Word-level
Flexibility	©	<u> </u>
Reconf. Speed	©	©
Config. Storage	8	©

DATAFLOW PROGRAM

- Directed graph of actors (functional units)
- Actors exchange tokens (data packets) through dedicated channels

actions state

PECULIARITIES

- Explicit the intrinsic application parallelism.
- Modularity favours model re-usability/adaptivity.

- I/O ports number
- I/O ports depth
- I/O ports burst of tokens

DATAFLOW PROGRAM

- Directed graph of actors (functional units)
- Actors exchange tokens (data packets) through dedicated channels

actions

PECULIARITIES

- Explicit the intrinsic application parallelism.
- Modularity favours model re-usability/adaptivity.

- I/O ports number
- I/O ports depth
- I/O ports burst of tokens

DATAFLOW PROGRAM

- Directed graph of actors (functional units)
- Actors exchange tokens (data packets) through dedicated channels

actions state

PECULIARITIES

- Explicit the intrinsic application parallelism.
- Modularity favours model re-usability/adaptivity.

- I/O ports number
- I/O ports depth
- I/O ports burst of tokens

DATAFLOW PROGRAM

- Directed graph of actors (functional units)
- Actors exchange tokens (data packets) through dedicated channels

dicated state

PECULIARITIES

- Explicit the intrinsic application parallelism.
- Modularity favours model re-usability/adaptivity.

- I/O ports number
- I/O ports depth
- I/O ports burst of tokens

DATAFLOW PROGRAM

- Directed graph of actors (functional units)
- Actors exchange tokens (data packets) through dedicated channels

actions

PECULIARITIES

- Explicit the intrinsic application **parallelism**.
- Modularity favours model re-usability/adaptivity.

- I/O ports number
- I/O ports depth
- I/O ports burst of tokens

DATAFLOW PROGRAM

- Directed graph of actors (functional units)
- Actors exchange tokens (data packets) through dedicated channels

actions state

PECULIARITIES

- Explicit the intrinsic application parallelism.
- Modularity favours model re-usability/adaptivity.

- I/O ports number
- I/O ports depth
- I/O ports burst of tokens

GOALS AND WORK EVOLUTION

DASIP 2010:

• High-level dataflow combination tool, front-end of the Multi-Dataflow Composer tool.

DASIP 2011:

 Concrete definition of the hardware template and of the dataflow-based mapping strategy.

ISCAS 2012:

Integration of the complete synthesis flow.

SAMOS 2014:

Implementation of a coarse-grained multi-standard decoder.

GOALS AND WORK EVOLUTION

GOAL: AUTOMATIC deployment of EFFICIENT HARDWARE-ACCELERATORS, contemporarily tackling HIGH-PERFORMANCE and LONG-TERM ADAPTIVITY.

DASIP 2010:

 High-level dataflow combination tool, front-end of the Multi-Dataflow Composer tool.

DASIP 2011:

• Concrete definition of the hardware template and of the dataflow-based mapping strategy.

ISCAS 2012:

Integration of the complete synthesis flow.

SAMOS 2014:

Implementation of a coarse-grained multi-standard decoder.

OUTLINE: CO-PROCESSOR GENERATION

- Introduction:
 - Problem statement
 - Background
 - Goals
- Co-processing units generation:
 - Approach and baseline Multi-Dataflow Composer
 - Template Interface Layer: hardware and automatic composition
- Performance assessment
 - Use-case scenario
 - Results
- Final remarks and future directions

MDC: BASIC APPROACH

- [1] F. Palumbo, N. Carta, D. Pani, P. Meloni and L. Raffo, *The multi-dataflow composer tool: generation of on-the-fly reconfigurable platforms*, Journal of Real-Time Image Processing, vol. 9, no. 1, pp 233-249, 2012.
- [2] N. Carta, C. Sau, D. Pani, F. Palumbo and L. Raffo, A Coarse-Grained Reconfigurable Approach for Low-Power Spike Sorting Architectures, IEEE/EMBS Conference on Neural Engineering, 2013.

THE TEMPLATE INTERFACE LAYER (TIL)

THE TEMPLATE INTERFACE LAYER (TIL)

THE TEMPLATE INTERFACE LAYER (TIL)

EXTERNAL INTERFACE

I ports number = 3

O ports number = 2

I/O ports **depth = X**

I/O ports **burst** of tokens = N

EXTERNAL INTERFACE

I ports number = 3

I ports number = 2

I/O ports **depth = X**

I/O ports **burst** of tokens = N

	number of resc	4400	
resource	3 inputs 2 outputs	N inputs M outputs	type
register	12	2+N*2+M*2	port-dependent
counter	6	1+N+M	port-dependent
mux 2x1	4	4	extendable
mux Nx1	2	2	extendable
mux Mx1	3	3	extendable
demux 1xN	3	3	extendable
demux 1xM	3	3	extendable
FIFO	2	M	port-dependent
port selector	2	2	extendable
addr generator	2	2	extendable
FSM	2	2	fixed

OUTLINE: PERFORMANCE ASSESSMENT

- Introduction:
 - Problem statement
 - Background
 - Goals
- Co-processing units generation:
 - Approach and baseline Multi-Dataflow Composer
 - Template Interface Layer: hardware and automatic composition
- Performance assessment
 - Use-case scenario
 - Results
- Final remarks and future directions

ACHIEVED RESULTS: TIL ADAPTIVITY

number of I/O ports	resource (% on available)							
(value=M=N)	Slice Regs (207360)	Slice LUTs (207360)	BUFGs (32)	BRAMs (288)	frequency [MHz]			
1	153 (0,1)	277 (0,1)	1 (3,1)	65 (22,6)	243,8			
2	261 (0,1)	430 (0,2)	1 (3,1)	65 (22,6)	243,8			
4	475 (0,2)	751 (0,4)	1 (3,1)	65 (22,6)	239,0			
8	901 (0,4)	1558 (0,8)	1 (3,1)	65 (22,6)	208,9			
16	1757 (0,9)	2760 (1,3)	1 (3,1)	65 (22,6)	197,6			
32	4353 (1,7)	5339 (2,6)	2 (6,3)	65 (22,6)	158,4			

ACHIEVED RESULTS: TIL ADAPTIVITY

number of I/O ports	resource (% on available)						
(value=M=N)	Slice Regs (207360)	Slice LUTs (207360)	BUFGs (32)	BRAMs (288)	frequency [MHz]		
1	153 (0,1)	277 (0,1)	1 (3,1)	65 (22,6)	243,8		
2	261 (0,1)	430 (0,2)	1 (3,1)	65 (22,6)	243,8		
4	475 (0,2)	751 (0,4)	1 (3,1)	65 (22,6)	239,0		
8	901 (0,4)	1558 (0,8)	1 (3,1)	65 (22,6)	208,9		
16	1757 (0,9)	2760 (1,3)	1 (3,1)	65 (22,6)	197,6		
32	4353 (1,7)	5339 (2,6)	2 (6,3)	65 (22,6)	158,4		

Results have been retrieved through the Xilinx Synthesis Technology tool targeting a Virtex 5 330 FPGA board. Only the co-processing unit without any coarse-grained reconfigurable datapath has been considered.

SLICES + 80% FREQ - 8%

deringing

ACHIEVED RESULTS: PERFOMANCES (1)

Results have been retrieved running the kernels in the targeted Virtex 5 330 FPGA board at an operating frequency of 125 MHz for the host processor and of 65 MHz (fixed by the CG reconfigurable datapath) for the co-processor.

ACHIEVED RESULTS: PERFOMANCES (1)

Results have been retrieved running the kernels in the targeted Virtex 5 330 FPGA board at an operating frequency of 125 MHz for the host processor and of 65 MHz (fixed by the CG reconfigurable datapath) for the co-processor.

ACHIEVED RESULTS: PERFOMANCES (1)

Results have been retrieved running the kernels in the targeted Virtex 5 330 FPGA board at an operating frequency of 125 MHz for the host processor and of 65 MHz (fixed by the CG reconfigurable datapath) for the co-processor.

ACHIEVED RESULTS: PERFOMANCES (2)

Results have been retrieved running the applications in the targeted Virtex 5 330 FPGA board at an operating frequency of 125 MHz for the host processor and of 65 MHz (fixed by the CG reconfigurable datapath) for the coprocessor.

ACHIEVED RESULTS: PERFOMANCES (2)

Results have been retrieved running the applications in the targeted Virtex 5 330 FPGA board at an operating frequency of 125 MHz for the host processor and of 65 MHz (fixed by the CG reconfigurable datapath) for the coprocessor.

READY-TO-USE COARSE-GRAINED RECONFIGURABLECO-PROCESSING UNIT

READY-TO-USE COARSE-GRAINED
RECONFIGURABLECO-PROCESSING UNIT

READY-TO-USE COARSE-GRAINED RECONFIGURABLECO-PROCESSING UNIT

auto_copr

AD-HOC BIG EFFORT DEVELOPMENT REQUIRING CO-PROCESSOR [1]

[1] F. Palumbo, N. Carta, D. Pani, P. Meloni and L. Raffo, *The multi-dataflow composer tool: generation of on-the-fly reconfigurable platforms*, Journal of Real-Time Image Processing, vol. 9, no. 1, pp 233-249, 2012.

[1] F. Palumbo, N. Carta, D. Pani, P. Meloni and L. Raffo, *The multi-dataflow composer tool: generation of on-the-fly reconfigurable platforms*, Journal of Real-Time Image Processing, vol. 9, no. 1, pp 233-249, 2012.

	resource (% on available)							
	Slice Regs (207360)	Slice LUTs (207360)	BUFGs (32)	BRAMs (288)	frequency [MHz]			
custom_copr	352 (0.2)	1041 (0.5)	1 (3.1)	8 (2.8)	155.1			
auto_copr	163 (0.1)	372 (0.2)	1 (3.1)	4 (1.4)	226.7			
auto vs. custom	-53.7	-68.6	0.0	-50.0	+46.2			

RESOURCE		resour	ce (% on ava	ilable)	
-50% FREQ +45%	Slice Regs (207360)	Slice LUTs (207360)	BUFGs (32)	BRAMs (288)	frequency [MHz]
custom_copr	352 (0.2)	1041 (0.5)	1 (3.1)	8 (2.8)	155.1
auto_copr	163 (0.1)	372 (0.2)	1 (3.1)	4 (1.4)	226.7
auto vs. custom	-53.7	-68.6	0.0	-50.0	+46.2

RESOURCE		resour	ce (% on ava	ilable)	
-50% FREQ +45%	Slice Regs (207360)	Slice LUTs (207360)	BUFGs (32)	BRAMs (288)	frequency [MHz]
custom_copr	352 (0.2)	1041 (0.5)	1 (3.1)	8 (2.8)	155.1
auto_copr	163 (0.1)	372 (0.2)	1 (3.1)	4 (1.4)	226.7
auto vs. custom	-53.7	-68.6	0.0	-50.0	+46.2

	C	ustom_cop	r	auto_copr		
packet size	1	4	16	1	4	16
loading [# cycles]	3	6	18	3	9	33
loading [μs] @maxf	0.19	0.39	1.16	0.13	0.40	1.46
storing [# cycles]	1	-	-	1	-	-
storing [µs] @maxf	0.06	-	-	0.04	-	-

RESOURCE		resour	ce (% on ava	ilable)	
-50% FREQ +45%	Slice Regs (207360)	Slice LUTs (207360)	BUFGs (32)	BRAMs (288)	frequency [MHz]
custom_copr	352 (0.2)	1041 (0.5)	1 (3.1)	8 (2.8)	155.1
auto_copr	163 (0.1)	372 (0.2)	1 (3.1)	4 (1.4)	226.7
auto vs. custom	-53.7	-68.6	0.0	-50.0	+46.2

	С	ustom_cop	r	auto_copr		
packet size	1	4	16	1	4	16
loading [# cycles]	3	6	18	3	9	33
loading [μs] @maxf	0.19	0.39	1.16	0.13	0.40	1.46
storing [# cycles]	1	-	-	1	-	-
storing [µs] @maxf	0.06	-	-	0.04	-	-

RESOURCE		resour	ce (% on ava	ilable)	
-50% FREQ +45%	Slice Regs (207360)	Slice LUTs (207360)	BUFGs (32)	BRAMs (288)	frequency [MHz]
custom_copr	352 (0.2)	1041 (0.5)	1 (3.1)	8 (2.8)	155.1
auto_copr	163 (0.1)	372 (0.2)	1 (3.1)	4 (1.4)	226.7
auto vs. custom	-53.7	-68.6	0.0	-50.0	+46.2

+21%	C	ustom_cop	or	auto_copr		
packet size	1	4	16	1	4	16
loading [# cycles]	3	6	18	3	9	33
loading [μs] @maxf	0.19	0.39	1.16	0.13	0.40	1.46
storing [# cycles]	1	-	-	1	-	-
storing [μs] @maxf	0.06	-	-	0.04	-	-

OUTLINE: FINAL REMARKS

- Introduction:
 - Problem statement
 - Background
 - Goals
- Co-processing units generation:
 - Approach and baseline Multi-Dataflow Composer
 - Template Interface Layer: hardware and automatic composition
- Performance assessment
 - Use-case scenario
 - Results
- Final remarks and future directions

FINAL REMARKS

- Automatic generation tools are needed to cut down time to market of CG reconfigurable co-processors
- MDC has been developed within the RVC domain to:
 - Implement coarse-grained reconfigurable datapaths but lacks of an interface able to exploit the datapath as coprocessing unit in a complete system
- In this work we have:
 - defined an adaptable interface for the MDC generated datapaths
 - integrated the generation and adaptation of this interface in the MDC framework

FINAL REMARKS

- Automatic generation tools are needed to cut down time to market of CG reconfigurable co-processors
- MDC has been developed within the RVC domain to:
 - Implement coarse-grained reconfigurable datapaths but lacks of an interface able to exploit the datapath as coprocessing unit in a complete system
- In this work we have:
 - defined an adaptable interface for the MDC generated datapaths
 - integrated the generation and adaptation of this interface in the MDC framework
- Future developments:
 - Optimize loading
 - Support to other kinds of communication schemes
 - Automatic APIs library

Conference on Design & Architectures for Signal & Image Processing

October 8-10, 2014 Madrid, Spain

THANK YOU

Automatic Generation of Dataflow-Based Reconfigurable Co-processing Units

Francesca Palumbo
University of Sassari
PolComIng Dept. – Information Eng. Unit