

THE MULTI-DATAFLOW COMPOSER TOOL: A RUNTIME RECONFIGURABLE HDL PLATFORM COMPOSER

Francesca Palumbo, Nicola Carta and Luigi Raffo

EOLAB - Microelectronics Lab DIEE - Dept. of Electrical and Electronic Eng. University of Cagliari - ITALY

- Problem formulation
- Background
- Goals

- Problem formulation
- Background
- Goals
- The Multi-Dataflow Composer tool

- Problem formulation
- Background
- Goals
- The Multi-Dataflow Composer tool
- Performance assessment
 - Use-case scenario
 - Results

- Problem formulation
- Background
- Goals
- The Multi-Dataflow Composer tool
- Performance assessment
 - Use-case scenario
 - Results
- Future research directions and conclusions
 - RVC extension
 - Applicable research hot topics
 - Final remarks

- Problem formulation,
- Background
- Goals
- The Multi-Dataflow Composer tool
- Performance assessment
 - Use-case scenario
 - Results
- Future research directions and conclusions
 - RVC extension
 - Applicable research hot topics
 - Final remarks

Scenario and Problem Statement

 Systems and applications on the market are becoming every day more complex. We will be called to face the "the disappearing computer" phenomenon [Streit2005] [i.e. implicit interfaces, users could be un aware].

APPLICATION TRENDS

ICT TRENDS

- Ubiquitous access
- Personalized services
- Delocalized computing and storage
- Massive data processing systems
- High-quality virtual reality
- Intelligent sensing
- High-performance real-time
 embedded computing

EXAMPLES

- Domestic robot
- Telepresence
- The car of the future
- Aerospace and avionics
- Human ++
- Computational science
- Realistic games
- Smart camera networks

Scenario and Problem Statement

 Systems and applications on the market are becoming every day more complex. We will be called to face the "the disappearing computer" phenomenon [Streit2005] [i.e. implicit interfaces, users could be un aware].

APPLICATION TRENDS

INTEGRATION, SPECIALIZATION and HIGH PERFORMANCE REQUIREMENTS

in such

COMPLEX COMPUTATIONAL HUNGRY ENVIRONMENTS

threaten

TRADITIONAL DESIGN FLOW.

STEP1: Reconfigurable Paradigm

- Systems are required to be *flexible* and *efficient*.
- Reconfigurable Paradigm (RP) to hw design: specialized computing platforms, capable of changing configuration to serve the targeted computations.

STEP1: Reconfigurable Paradigm

- Systems are required to be *flexible* and *efficient*.
- Reconfigurable Paradigm (RP) to hw design: specialized computing platforms, capable of changing configuration to serve the targeted computations.

	FINE- GRAINED	COARSE- GRAINED
	Bit-level	Word-level
Flexibility		
Reconf. Speed		\odot
Config. Storage	$\overline{\mathfrak{S}}$	

STEP1: Reconfigurable Paradigm

- Systems are required to be *flexible* and *efficient*.
- Reconfigurable Paradigm (RP) to hw design: specialized computing platforms, capable of changing configuration to serve the targeted computations.

HW-SW GAP:

The more the hw is specialized the more is difficult to program it.

STEP 2: RVC Standard

• The MPEG group has addressed the problem of defining an efficient formalism for codecs specification: the Reconfigurable Video Coding (RVC) framework is part of the MPEG standard since may 2010.

• Exploiting the Dataflow Model of Computation (D-MoC), specifications are provided in the form of dataflow programs: networks of Functional Units (FUs) belonging to a standard Video Tool Library (VTL).

RVC modularity can be coupled with a coarse-grained RP map on a unique hw substrate multiple D-MoC models.

RVC modularity can be coupled with a coarse-grained RP map on a unique hw substrate multiple D-MoC models.

 High-level dataflow combination tool, front-end of the actual MDC tool. [DASIP 2010]

RVC modularity can be coupled with a coarse-grained RP map on a unique hw substrate multiple D-MoC models.

 High-level dataflow combination tool, front-end of the actual MDC tool. [DASIP 2010]

 Multi-Dataflow Composer (MDC) tool: concrete definition of the hardware template and of the D-MoC based mapping strategy. [DASIP 2011]

RVC modularity can be coupled with a coarse-grained RP map on a unique hw substrate multiple D-MoC models.

- High-level dataflow combination tool, front-end of the actual MDC tool. [DASIP 2010]
- Multi-Dataflow Composer (MDC) tool: concrete definition of the hardware template and of the D-MoC based mapping strategy. [DASIP 2011]

 Integration of the full high-level to hw composition and generation framework.

- Introduction:
 - Problem formulation,
 - Background
 - Goals

• The Multi-Dataflow Composer tool

- Performance assessment
 - Use-case scenario
 - Results
- Future research directions and conclusions
 - RVC extension
 - Applicable research hot topics
 - Final remarks

D-MoC and Coarse-Grained RP

Parallel and Serial MPEG-4 SP

F. Palumbo et.al., "RVC: A multi-decoder CAL composer tool", in Proc. DASIP 2010]

F. Palumbo et.al., "RVC: A multi-decoder CAL composer tool", in Proc. DASIP 2010]

Multi-Dataflow Composer Tool

- The Multi-Dataflow Composer (MDC) tool IS an automatic platform constructor, composing different Functional Units (FUs) on a coarse-grained reconfigurable template.
- The MDC IS responsible of providing runtime programmability of the hw substrate to switch among given the dataflows.
- The MDC IS NOT capable of High Level Synthesis from dataflow to hw.

MDC: Generalities

- The MDC tool, recognizing the similarities among different D-MoCs descriptions, automatically composes a unique reconfigurable multi-dataflow system:
 - exploiting heterogeneous blocks, the FUs in the input networks described according D-MoC formalism, with homogeneous interfaces;
 - integrating the minimum FUs set to correctly accomplish the provided dataflows.
- Reconfiguration is ensured by a couple of switching element, named switching box (Sbox):
 - inserted by the MDC tool at the crossroads among different dataflows to merge/separate the path of the processed data.
 - logically kept simple to provide high-speed reconfiguration (<u>one</u> <u>clock cycle is sufficient</u>).

MDC: Front-End

- The MDC front-end:
 - Elaborates the input D-MoC inputs to create atomic actors (only) networks;
 - Translates the flattened networks into C++ Directed Acyclic Graphs (DAGs);
 - Compares the DAGs and merges them into a unique C++ DAG;
 - With respect to (*), it stores the information for the runtime reconfiguration, producing the configuration tables (CTs) of the Sbox

(*) [F. Palumbo et.al., "RVC: A multi-decoder CAL composer tool", in Proc. DASIP 2010]

- MDC: Back-End
- The MDC back-end is responsible of assembling the HDL Verilog coarse-grained reconfigurable hw, corresponding to the multi-dataflow C++ DAG produced by the MDC front-end.
- Having originally N different networks in input, N-1 LUTs are inserted in the final hw substrate, one for each CT created by the MDC front-end.

- Introduction:
 - Problem formulation,
 - Background
 - Goals
- The Multi-Dataflow Composer tool
- Performance assessment
 - Use-case scenario
 - Results
- Future research directions and conclusions
 - RVC extension
 - Applicable research hot topics
 - Final remarks

	Zoom	Anti-Aliasing
Qsort	Х	
Min_Max	Х	Х
Corr	Х	
Abs	Х	Х
RGB2YCC	Х	
YCC2RGB	Х	
Sbwlabel		Х
Median		Х
Cubic		Х
Cubic_Conv		Х
Check_GeneralBilevel		X

	Zoom	Anti-Aliasing
Qsort	Х	
Min_Max	Х	X
Corr	Х	
Abs	Х	X
RGB2YCC	Х	
YCC2RGB	Х	
Sbwlabel		Х
Median		Х
Cubic		Х
Cubic_Conv		Х
Check_GeneralBilevel		Х

- Introduction:
 - Problem formulation,
 - Background
 - Goals
- The Multi-Dataflow Composer tool
- Performance assessment
 - Use-case scenario
 - Results
- Future research directions and conclusions
 - RVC extension
 - Applicable research hot topics
 - Final remarks

EOLAB/INSA Cooperation: RVC Extension

- The MDC tool is a N:1 platform builder. Orcc-VHDL is a 1:1 high level hardware compiler. Therefore, they can be integrated to compose a <u>complete multi-purpose systems</u> <u>generation and composition framework</u>.
- In the RVC domain, this integration will allow the creation of multi-standard codec platforms.

- Power Management: trough the Sbox we foresee the possibility of switching off large portion of the substrate belonging to currently unused dataflows.
 - Complexity Management: the MDC tool could be coupled with a high level profiler to allow moving additional steps toward the hw-sw gap closure. Such a profiler operating at the graph level, combining lower level back-annotated information and higher level functional information, will be able for example to provide important directives for reconfiguration.

Final Remarks

- The Multi-Dataflow Composer tool is intended to close the gap between complex multi-purpose heterogeneous hw platforms and their sw programming:
 - Leveraging on the combination of the Dataflow Model of Computation and the coarse-grained reconfigurable paradigm, it builds runtime reconfigurable multi-purpose systems, starting from the high level dataflow descriptions of the applications.
 - Benefits:
 - Automatic derivation of complex hw platforms, with a very small users intervention.
 - Possibility of addressing any multi-purpose system, if described according to the RVC formalism.
 - Runtime reconfigurability is provided without neither hw shut-down nor suspension.
 - Concrete on-chip area saving.

Acknowledgements

The research leading to these results has received funding from:

the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 248424, MADNESS Project

the Region of Sardinia, Young Researchers Grant, PO Sardegna FSE 2007-2013, L.R.7/2007 "Promotion of the scientific research and technological innovation in Sardinia" under grant agreement CRP-18324 RPCT Project Conference on Design and Architectures for Signal and Image Processing -2011

Electronic Chips & Systems design Initiative

November 2nd-4th, 2011, Tampere, Finland

THE MULTI-DATAFLOW COMPOSER TOOL: A RUNTIME RECONFIGURABLE HDL PLATFORM COMPOSER

Francesca Palumbo, Ph.D.

<u>francesca.palumbo@diee.unica.it</u> EOLAB - Microelectronics Lab Dept. of Electrical and Electronics Eng. University of Cagliari (ITALY)