
Conference on Design and Architectures for Signal and Image Processing -2010

October 26th-28th, 2010,
Edinburgh, Scotland

Electronic Chips & Systems design Initiative

RVC: A MULTI-DECODER CAL

COMPOSER TOOL

M. Mattavelli and G. Roquier

EPFL, Lausanne

SWITZERLAND

F. Palumbo, D. Pani, E. Manca

and L. Raffo

EOLAB - Microelectronics Lab

DIEE , Cagliari – ITALY

D
A

S
IP

 2
0

1
0

 –
 O

c
to

b
e

r
2

6
th

-2
8

th
,
E

d
in

b
u

rg
h

,
S

c
o

tl
a

n
d

Outline

• Problem statement

• The Multi-Decoder CAL Composer tool

– The CAL2GRAPH algorithm

– The MERGER algorithm

• Use-Case: the parallel and the serial MPEG-4 SP

• Final remarks and exploitation

D
A

S
IP

 2
0

1
0

 –
 O

c
to

b
e

r
2

6
th

-2
8

th
,
E

d
in

b
u

rg
h

,
S

c
o

tl
a

n
d

Problem Statement

• The problem of defining an efficient formalism for

codecs specification has been recently addressed by

the MPEG group through the development of the

Reconfigurable Video Coding (RVC) framework.

• In this work we have moved one step further,

conceiving the Multi-Decoder CAL Composer (MDCC)

tool, based on the MPEG RVC formalism, able to

characterize multi-decoder platforms.

• The MDCC is based on a platform template able to

allow fast switching among codecs configurations

without the need of any complete context switch.

D
A

S
IP

 2
0

1
0

 –
 O

c
to

b
e

r
2

6
th

-2
8

th
,
E

d
in

b
u

rg
h

,
S

c
o

tl
a

n
d

The MDCC tool: Basis

Decoder Composition

Mechanism VTL

(RVC-CAL FUs)

Selection of FUs

and Parameter Assignment

Abstract Decoder Model

(FNL+RVC-CAL)

Decoder Description

(FNL+BSDL)

• Specification: dataflow programs composed by a

network of Functional Units (FUs) belonging to a

standard Video Tool Library (VTL).

• The modularity property allows to conceive

implementation procedures based on static or

dynamic reconfigurations.

D
A

S
IP

 2
0

1
0

 –
 O

c
to

b
e

r
2

6
th

-2
8

th
,
E

d
in

b
u

rg
h

,
S

c
o

tl
a

n
d

The MDCC tool: Definition

• Looking at the similarities between the decoding

algorithms to be integrated in a single description,

the MDCC automatically composes a single

configurable multi-decoder which is formed by:

– All the required modules necessary to accomplish the

video processing task;

– Some routing modules (Sbox) responsible of defining the

correct path of the data and of guaranteeing the

functionalities of each single integrated decoders;

– A central controller, which is able to reconfigure the

platform at runtime according to the information in the

incoming stream.

D
A

S
IP

 2
0

1
0

 –
 O

c
to

b
e

r
2

6
th

-2
8

th
,
E

d
in

b
u

rg
h

,
S

c
o

tl
a

n
d

The MDCC tool: Working Principle (1)

DEC. 1 DEC. 2

MDCC tool
MDCC merges DEC.1 and

DEC.2 creating a single

multi-standard DEC, that

can be easily converted

into a proprietary hw/sw

implementation.

Decoder Composition

Mechanism VTL

(RVC-CAL FUs)

Selection of FUs

and Parameter Assignment

Abstract Decoder Model

(FNL+RVC-CAL)

Decoder Description

(FNL+BSDL)

B F

D

G

C

Sbox E

A

Sbox

A

B

C

D

E

A

B

F

G

E

D
A

S
IP

 2
0

1
0

 –
 O

c
to

b
e

r
2

6
th

-2
8

th
,
E

d
in

b
u

rg
h

,
S

c
o

tl
a

n
d

The MDCC tool: Working Principle (2)

DEC. 1 DEC. 2

MDCC tool

Decoder Composition

Mechanism VTL

(RVC-CAL FUs)

Selection of FUs

and Parameter Assignment

Abstract Decoder Model

(FNL+RVC-CAL)

Decoder Description

(FNL+BSDL)

MDCC analyzes the RVC

“abstract specifications”

of DEC.1 and DEC.2 and

inserts the Sboxes to

enable the non-shared

items just when needed.

B F

D

G

C

Sbox E

A

Sbox

A

B

C

D

E

A

B

F

G

E

D
A

S
IP

 2
0

1
0

 –
 O

c
to

b
e

r
2

6
th

-2
8

th
,
E

d
in

b
u

rg
h

,
S

c
o

tl
a

n
d

The MDCC tool: Working Principle (3)

A

B

C

D

E

A

B

F

G

E

Decoder Composition

Mechanism VTL

(RVC-CAL FUs)

Selection of FUs

and Parameter Assignment

Abstract Decoder Model

(FNL+RVC-CAL)

Decoder Description

(FNL+BSDL)

DEC. 1 DEC. 2

 MDCC tool

Sbox units allow to

change, at runtime, the

topology in order to

define which DEC is in

use.
B F

D

G

C

Sbox E

A

Sbox

D
A

S
IP

 2
0

1
0

 –
 O

c
to

b
e

r
2

6
th

-2
8

th
,
E

d
in

b
u

rg
h

,
S

c
o

tl
a

n
d

The MDCC tool: Working Principle (4)

Decoder Composition

Mechanism VTL

(RVC-CAL FUs)

Selection of FUs

and Parameter Assignment

Abstract Decoder Model

(FNL+RVC-CAL)

Decoder Description

(FNL+BSDL)

B F

D

G

C

Sbox E

A

Sbox

DEC. 1 DEC. 2

 MDCC tool

MDCC allows to switch

from DEC.1 to DEC.2

according to the incoming

bitstream, without any

complete context switch.

A

B

C

D

E

A

B

F

G

E

D
A

S
IP

 2
0

1
0

 –
 O

c
to

b
e

r
2

6
th

-2
8

th
,
E

d
in

b
u

rg
h

,
S

c
o

tl
a

n
d

The MDCC tool: Input and Output

• The MDCC tool:

― as inputs receives the RVC-CAL abstract DECs model

― as outputs creates the C++ directed graph (DG) of the

multi-decoder environment

D
A

S
IP

 2
0

1
0

 –
 O

c
to

b
e

r
2

6
th

-2
8

th
,
E

d
in

b
u

rg
h

,
S

c
o

tl
a

n
d

• The MDCC tool is composed of:

― the CAL2GRAPH interpreter, which creates the C++ DG of

a single DEC

― the MERGER, which creates the multi-decoder C++ DG

starting from two DGs.

The MDCC tool: Building Blocks

D
A

S
IP

 2
0

1
0

 –
 O

c
to

b
e

r
2

6
th

-2
8

th
,
E

d
in

b
u

rg
h

,
S

c
o

tl
a

n
d

The CAL2GRAPH: Basis

• It operates on the single DEC basis

• It generates a flattened C++ DG, composed of atomic

actors only

– Nodes : atomic actors

– Arcs: connection among actors

• It works in three steps:

– FNL analysis, using a FLEX lexical analyzer, to determine the

Lexical Tokens (LTs)

– LTs processing, using a Bison grammar interpreter, to create the

DG

– Recursive iteration until the DG is not completely atomic.

Abstract Decoder Model

(FNL+RVC-CAL)

CAL2GRAPH C++ Decoder graph

D
A

S
IP

 2
0

1
0

 –
 O

c
to

b
e

r
2

6
th

-2
8

th
,
E

d
in

b
u

rg
h

,
S

c
o

tl
a

n
d

The CAL2GRAPH: Building Blocks

• Actor Interface Section -> nodes management

• Link Section -> connection management

• Final Section -> recursion management

D
A

S
IP

 2
0

1
0

 –
 O

c
to

b
e

r
2

6
th

-2
8

th
,
E

d
in

b
u

rg
h

,
S

c
o

tl
a

n
d

The CAL2GRAPH: Actor Interface Section

• Actor Interface Section -> nodes management through the

FNL parsing:

― as soon as an actor is found a node is instantiated in the DG

― if the instantiated node is not atomic a reference is pushed in

the recursion queue

D
A

S
IP

 2
0

1
0

 –
 O

c
to

b
e

r
2

6
th

-2
8

th
,
E

d
in

b
u

rg
h

,
S

c
o

tl
a

n
d

The CAL2GRAPH: Link Section

• Link Section -> connection management through the FNL

parsing:

― global input to network port or sub-network input port with network output

port

― network port to global output or sub-network output port with network

input port

― Generic intermediate nodes connection

D
A

S
IP

 2
0

1
0

 –
 O

c
to

b
e

r
2

6
th

-2
8

th
,
E

d
in

b
u

rg
h

,
S

c
o

tl
a

n
d

The CAL2GRAPH: Final Section

• Final Section -> recursion management through the recursion

queue analysis:

― If it is empty the DG is complete

― If it is not empty the DG graph is still not completely atomic and recursion

can take place, by popping a reference from the recursion queue and

executing the CAL2GRAPH again

D
A

S
IP

 2
0

1
0

 –
 O

c
to

b
e

r
2

6
th

-2
8

th
,
E

d
in

b
u

rg
h

,
S

c
o

tl
a

n
d

The MERGER: Basis

• It operates on a couple of C++ DGs

• It generates the global multi-decoder C++ DG of the

entire multi-standard system

– Integrating the whole set of actors of the original DGs.

– Preserving the connections among nodes.

– Placing the Sbox units are at the crossroads between different

paths, to allow more than one DG to share a common dataflow

where some actors are in common and some others are not.

MERGER
C++ Decoder graph 1

C++ Decoder graph 2

C++ Decoder graph 3

Global multi-decoder

C++graph

multi-decoder

C++graph

MERGER

D
A

S
IP

 2
0

1
0

 –
 O

c
to

b
e

r
2

6
th

-2
8

th
,
E

d
in

b
u

rg
h

,
S

c
o

tl
a

n
d

The MERGER: Application Example (1)

• The MERGER starts from the root of the two dataflows

• Three iterations on I:

– I to A, I to B -> the same on both reported as they are

– I to C/D -> Sbox to be inserted

• Children Set: [A,B,C,D]

B

C

A F

E G

B

A H

E G

F D I

 J J

 I

 O

 O

Father Nodes

[I,J]

Children Nodes

[A,B,C,D]

Father Nodes

[I,J]

DEC. 1 DEC. 2

B

A

 I

C

D
Sbox

D
A

S
IP

 2
0

1
0

 –
 O

c
to

b
e

r
2

6
th

-2
8

th
,
E

d
in

b
u

rg
h

,
S

c
o

tl
a

n
d

The MERGER: Application Example (2)

• One iteration on J:

– J to E -> the same on both reported as it is

• Iteration on Father Nodes is complete

• Children Set: [A,B,C,D,E]. Father Nodes = Children Nodes

B

C

A F

E G

B

A H

E G

F D I

 J J

 I

 O

 O

Father Nodes

[I,J]

Children Nodes

[A,B,C,D,E]

DEC. 1 DEC. 2

B

A

 I

C

E J

D
Sbox

D
A

S
IP

 2
0

1
0

 –
 O

c
to

b
e

r
2

6
th

-2
8

th
,
E

d
in

b
u

rg
h

,
S

c
o

tl
a

n
d

The MERGER: Application Example (3)

• One iteration on A:

– A to F/H -> Sbox to be inserted

• Children Set: [F,H]

B

C

A F

E G

B

A H

E G

F D I

 J J

 I

 O

 O

Father Nodes

[A,B,C,D,E]

Children Nodes

[F,H]

DEC. 1 DEC. 2 H

B

A

 I

C

E J

D
Sbox

Sbox

F

D
A

S
IP

 2
0

1
0

 –
 O

c
to

b
e

r
2

6
th

-2
8

th
,
E

d
in

b
u

rg
h

,
S

c
o

tl
a

n
d

The MERGER: Application Example (4-5)

• Iteration on B and C:

– Nothing has to be done

• Children Set: [F,H]

B

C

A F

E G

B

A H

E G

F D I

 J J

 I

 O

 O

Father Nodes

[A,B,C,D,E]

Children Nodes

[F,H]

DEC. 1 DEC. 2 H

B

A

 I

C

E J

D
Sbox

Sbox

F

D
A

S
IP

 2
0

1
0

 –
 O

c
to

b
e

r
2

6
th

-2
8

th
,
E

d
in

b
u

rg
h

,
S

c
o

tl
a

n
d

The MERGER: Application Example (6)

• One iteration on D:

– D to F -> F is already in the global DG -> Sbox to be inserted

• Children Set: [F,H]

B

C

A F

E G

B

A H

E G

F D I

 J J

 I

 O

 O

Father Nodes

[A,B,C,D,E]

Children Nodes

[F,H]

DEC. 1 DEC. 2 H

B

A

 I

C

E J

D
Sbox

Sbox

Sbox F

D
A

S
IP

 2
0

1
0

 –
 O

c
to

b
e

r
2

6
th

-2
8

th
,
E

d
in

b
u

rg
h

,
S

c
o

tl
a

n
d

The MERGER: Application Example (7)

• One iteration on E:

– E to G -> the same on both reported as it is

• Children Set: [F,H,G]. Iteration on Father Nodes is complete

B

C

A F

E G

B

A H

E G

F D I

 J J

 I

 O

 O

Father Nodes

[A,B,C,D,E]

Children Nodes

[F,H,G]

DEC. 1 DEC. 2 H

B

A

 I

C

E J G

D
Sbox

Sbox

Sbox F

D
A

S
IP

 2
0

1
0

 –
 O

c
to

b
e

r
2

6
th

-2
8

th
,
E

d
in

b
u

rg
h

,
S

c
o

tl
a

n
d

The MERGER: Application Example (8)

• One iteration on F:

– F to O -> the same on both reported as it is

• Children Set: [O]

B

C

A F

E G

B

A H

E G

F D I

 J J

 I

 O

 O

Father Nodes

[F,H,G]

Children Nodes

[O]

DEC. 1 DEC. 2 H

B

A

 I

C

E J G

D
Sbox

Sbox

Sbox O F

D
A

S
IP

 2
0

1
0

 –
 O

c
to

b
e

r
2

6
th

-2
8

th
,
E

d
in

b
u

rg
h

,
S

c
o

tl
a

n
d

The MERGER: Application Example (9-10)

• Iteration on H and G:

– Nothing has to be done

• Children Set: [O]

B

C

A F

E G

B

A H

E G

F D I

 J J

 I

 O

 O

Father Nodes

[F,H,G]

Children Nodes

[O]

DEC. 1 DEC. 2 H

B

A

 I

C

E J G

D
Sbox

Sbox

Sbox O F

D
A

S
IP

 2
0

1
0

 –
 O

c
to

b
e

r
2

6
th

-2
8

th
,
E

d
in

b
u

rg
h

,
S

c
o

tl
a

n
d

The MERGER: Application Example (11)

• One iteration on 0:

– O is a global output, nothing has to be done

• Children Set: []. The MERGER terminates.

B

C

A F

E G

B

A H

E G

F D I

 J J

 I

 O

 O

Father Nodes

[O]

Children Nodes

[]

DEC. 1 DEC. 2 H

B

A

 I

C

E J G

D
Sbox

Sbox

Sbox O F

D
A

S
IP

 2
0

1
0

 –
 O

c
to

b
e

r
2

6
th

-2
8

th
,
E

d
in

b
u

rg
h

,
S

c
o

tl
a

n
d

The MERGER: Application Example

H

B

A

 I

C

E J G

D

Sbox

Sbox

Sbox O F

D
A

S
IP

 2
0

1
0

 –
 O

c
to

b
e

r
2

6
th

-2
8

th
,
E

d
in

b
u

rg
h

,
S

c
o

tl
a

n
d

Use Case: Parallel and Serial MPEG-4 SP(1)

PARALLEL MPEG4-SP

SERIAL MPEG4-SP

D
A

S
IP

 2
0

1
0

 –
 O

c
to

b
e

r
2

6
th

-2
8

th
,
E

d
in

b
u

rg
h

,
S

c
o

tl
a

n
d

Use Case: Parallel and Serial MPEG-4 SP(2)

• Multi-decoder units:

 46 instead of 59.

• Multi-decoder units +

Sbox:

 64 instead of 59.

• It is less costly to

integrate Sbox units

than more complex ones

(e.g. DCT and FFT).

• The more the integrated

dataflows the more will

be the instantiated Sbox

units.

D
A

S
IP

 2
0

1
0

 –
 O

c
to

b
e

r
2

6
th

-2
8

th
,
E

d
in

b
u

rg
h

,
S

c
o

tl
a

n
d

Use Case: Parallel and Serial MPEG-4 SP(3)

D
A

S
IP

 2
0

1
0

 –
 O

c
to

b
e

r
2

6
th

-2
8

th
,
E

d
in

b
u

rg
h

,
S

c
o

tl
a

n
d

Final Remarks

• Exploiting the modularity property of the RVC

formalism it is possible to implement an automatic

method for video codecs formal definition.

• The proposed Multi-Decoder CAL Composer tool has

been already successfully tested on factitious

dataflows and also on a MPEG-4 SP use case,

merging its serial and parallel descriptions.

• This tool is fully compatible with other RVC-CAL state

of the art tools: all the outputs are provided along

with the FNL descriptions.

D
A

S
IP

 2
0

1
0

 –
 O

c
to

b
e

r
2

6
th

-2
8

th
,
E

d
in

b
u

rg
h

,
S

c
o

tl
a

n
d

The MDCC tool Possible Exploitations

• From the hardware viewpoint:

– Completing the MDCC with a tool called graph2HW in order

to accomplish the automatic creation of the HDL

description of the overall multi-decoder platform.

• From the software viewpoint:

– Completing the MDCC with a high level profiler tool in order

to allow to bridge the gap between hardware physical

implementation and software development. This tool will

operate at the direct graph level combining lower level

back-annotated information with higher level functional

information.

D
A

S
IP

 2
0

1
0

 –
 O

c
to

b
e

r
2

6
th

-2
8

th
,
E

d
in

b
u

rg
h

,
S

c
o

tl
a

n
d

Acknowledgements

The research leading to these results has received funding from:

the European Community's Seventh

Framework Programme (FP7/2007-

2013) under grant agreement no.

248424, MADNESS Project

the Region of Sardinia, Young

Researchers Grant, PO Sardegna FSE

2007-2013, L.R.7/2007 “Promotion of

the scientific research and

technological innovation in Sardinia”

under grant agreement CRP-18324

RPCT Project

Conference on Design and Architectures for Signal and Image Processing -2010

October 26th-28th, 2010,
Edinburgh, Scotland

Electronic Chips & Systems design Initiative

RVC: A MULTI-DECODER CAL

COMPOSER TOOL

Francesca Palumbo, Ph.D.

francesca.palumbo@diee.unica.it

EOLAB - Microelectronics Lab

Dept. of Electrical and Electronics Eng.

University of Cagliari (ITALY)

mailto:francesca.palumbo@diee.unica.it

