Varieties of Brouwer–Zadeh Lattices
Generated by Horizontal Sums

Claudia MUREŞAN
University of Cagliari
c.muresan@yahoo.com
Joint work with Roberto GIUNTINI, Antonio LEDDA and Francesco PAOLI
May 24, 2018

Let us denote by AOL the class of antiortholattices and by OL, OML, BZL and PBZL^* the varieties of the ortholattices, orthomodular lattices, Brouwer–Zadeh lattices (in brief, BZ–lattices) and PBZ*$–lattices, respectively; recall that PBZ^*–lattices are the paraorthomodular BZ–lattices in which each pair consisting of an element and its Kleene complement fulfills the Strong de Morgan condition.

For any non–trivial bounded lattice L, we let the horizontal sum of L with the two–element chain be L. For any non–trivial BZ–lattices A and B, we endow the horizontal sum of bounded lattices $A \boxplus B$ with two unary operations that restrict to the Kleene complement and the Brouwer complement of A and B; in this way, $A \boxplus B$ becomes a BZ–lattice iff one of the summands A and B is an ortholattice, and a PBZ*–lattice iff one of them is an orthomodular lattice and the other is a PBZ*–lattice.

We study the congruences of horizontal sums of BZ–lattices.

For any classes C and D of BZ–lattices, we denote:

$$C \oplus D = \{D_1\} \cup \{A \oplus B : A \in C \setminus \{D_1\}, B \in D \setminus \{D_1\}\},$$

where D_1 is the trivial BZ–lattice.

With the usual notation for the class operators, we study the varieties:

$$\text{OML} \vee \text{HSP}(\text{AOL}), \quad \text{OL} \vee \text{HSP}(\text{AOL}),$$
$$\text{HSP}(\text{OML} \boxplus \text{AOL}), \quad \text{HSP}(\text{OL} \boxplus \text{AOL}),$$
$$\text{HSP}(\text{OML} \boxplus \text{HSP}(\text{AOL})), \quad \text{HSP}(\text{OL} \boxplus \text{HSP}(\text{AOL}))$$

from the point of view of their relative axiomatizations with respect to each other and to PBZL^* and BZL.